
Swarm 
intelligence

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Analysis of Algorithms and 
Heuristic Problem Solving 
Version 2024



Nature inspired 
methods

 Besides evolutionary computation, 
nature is an inspiration for many other 
computational algorithms.

 Swarm intelligence (SI) is the collective behavior of decentralized, 
self-organized systems, natural or artificial. 

 A population of simple agents interacting locally with one another 
and with their environment.

 The agents follow very simple rules, and although there is no 
centralized control structure dictating how individual agents should 
behave, local, and to a certain degree random, interactions between 
such agents lead to the emergence of "intelligent" global behavior, 
unknown to the individual agents. 

 Examples in natural systems of SI include ant colonies, bird flocking, 
animal herding, bacterial growth, fish schooling and microbial 
intelligence.



Computational SI

 Computational properties 

 Fixed population

 Autonomous individual

 Communication between agents

 We will cover 

 Particle swarm optimization

 Ant colony optimization



Swarming – the definition

 Aggregation of similar animals, generally 
cruising in the same direction

 Termites swarm to build colonies

 Birds swarm to find food

 Bees swarm to reproduce



Swarming is powerful

 Swarms can achieve things that an individual 
cannot



Human swarms



Powerful … but simple

All evidence suggests:

 No central control

 Only simple rules for each individual

 Emergent phenomena

 Self-organization



Harness this power out of simplicity

 Technical systems are getting larger and more 
complex

 Global control hard to define and program

 Larger systems lead to more errors

 Swarm intelligence systems are:

 Robust

 Relatively simple (How to program a swarm?)



Swarming – example

 Bird flocking

 “Boids” model was proposed by Reynolds (1985)

 Boids = Bird-oids (bird like) 

 Only three simple rules 



Collision Avoidance

 Rule 1: Avoid Collision with neighboring birds



Velocity matching 

 Rule 2: Match the velocity of neighboring birds



Flock centering

 Rule 3: Stay near neighboring birds



Define the neighborhood

 Model the view of a bird

 Only local knowledge, only local interaction

 Affects the swarm behavior (fish vs. birds)



Swarming - characteristics

 Simple rules for each individual

 No central control

 Decentralized and hence robust

 Emergent

 Performs complex functions



Ant Colony Optimization - Biological 
Inspiration 

 Inspired by foraging behavior of ants.

 Ants find shortest path to food source from nest.

 Ants deposit pheromone along traveled path which is 
used by other ants to follow the trail.

 This kind of indirect communication via the local 
environment is called stigmergy.

 Has adaptability, robustness and redundancy.



Foraging behavior of Ants

 2 ants start with equal probability of going on either 
path.



Foraging behavior of Ants

 The ant on shorter path has a shorter to-and-fro 
time from it’s nest to the food.



Foraging behavior of Ants

 The density of pheromone on the shorter path is 
higher because of 2 passes by the ant (as compared 
to 1 by the other).



Foraging behavior of Ants

 The next ant takes the shorter route.



Foraging behavior of Ants

 Over many iterations, more ants begin using the 
path with higher pheromone, thereby further 
reinforcing it.



Foraging behavior of Ants

 After some time, the shorter path is almost 
exclusively used.



Ant colony

 Pheromones

 Ants lead their sisters to food source

 Evaporation

 Moving targets



Illustration of the dynamic adaptation 



Illustration of the dynamic adaptation 



Illustration of the dynamic adaptation 



Illustration of the dynamic adaptation 



Illustration of the dynamic adaptation 



Generic ACO

 Formalized into a metaheuristic.

 Artificial ants build solutions to an optimization 
problem and exchange info on their quality vis-à-
vis real ants.

 A combinatorial optimization problem reduced 
to a construction graph.

 Ants build partial solutions in each iteration and 
deposit pheromone on each edge.



ACO pseudo code 

Initialization of pheromones

do {

for each  ant

find solution: use pheromones and cost of path to select route
apply local optimization (optional)
update pheromones: enforcement, evaporation

} while (! satisfied)

return best overall solution



ACO details

 Pheromones updates

  speed of evaporation

 Trails updates

 Many variants
𝜏𝑖,𝑗 = (1 − 𝜌)𝜏𝑖,𝑗 + Δ𝜏𝑖,𝑗

Δ𝜏𝑖,𝑗 = ቊ
1/𝐶
0

ൠ
if ant takes the connection between i,j

otherwise
,

where 𝐶 is a cost of edge i,j



ACO for TSP

 Cities 1,2,...,n

 Cost ci,j

 Construct the cheapest Hamiltonian tour 
through cities

 Attractiveness i,j = 1/ ci,j

 Probability of ant’s transition 

  - impact of pheromones

  - impact of transition cost

𝑝𝑖,𝑗 =
𝜏𝑖,𝑗
𝛼 𝜂𝑖,𝑗

𝛽

σ𝜏𝑖,𝑗
𝛼 𝜂𝑖,𝑗

𝛽



A simple TSP example

A

E

D

C

B

1

[]

4

[]

3

[]

2

[]

5

[]

dAB =100;dBC = 60…;dDE =150



Iteration 1

A

E

D

C

B
1

[A]

5

[E]

3

[C]

2

[B]

4

[D]



How to build next sub-solution?

A

E

D

C

B
1

[A]

1

[A]

1

[A]
1

[A]

1

[A,D]

𝑝𝑖𝑗(𝑡) = ൞

𝜏𝑖𝑗(𝑡)
𝛼𝜂𝑖𝑗

𝛽

σ𝑘∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘
𝜏𝑖𝑘(𝑡)

𝛼𝜂𝑖𝑘
𝛽

if j ∈ allowed

0 otherwise



Iteration 2

A

E

D

C

B
3

[C,B]

5

[E,A]

1

[A,D]

2

[B,C]

4

[D,E]



Iteration 3

A

E

D

C

B

4

[D,E,A]

5

[E,A,B]

3

[C,B,E]

2

[B,C,D]

1

[A,D,C]



Iteration 4

A

E

D

C

B

4

[D,E,A,B]

2

[B,C,D,A]

5

[E,A,B,C]

1

[A,DCE]

3

[C,B,E,D]



Iteration 5

A

E

D

C

B

1

[A,D,C,E,B]

3

[C,B,E,D,A]

4

[D,E,A,B,C]

2

[B,C,D,A,E]

5

[E,A,B,C,D]



Path and Pheromone Evaluation

1

[A,D,C,E,B]

5

[E,A,B,C,D]

L1 =300

Δ𝜏𝑖,𝑗
𝑘 = ቐ

𝑄

𝐿𝑘
𝑖𝑓(𝑖, 𝑗) ∈ tour

0 otherwise

L2 =450

L3 =260

L4 =280

L5 =420

2

[B,C,D,A,E]

3

[C,B,E,D,A]

4

[D,E,A,B,C]

Δ𝜏𝐴,𝐵
𝑡𝑜𝑡𝑎𝑙 = Δ𝜏𝐴,𝐵

1 + Δ𝜏𝐴,𝐵
2 + Δ𝜏𝐴,𝐵

3 + Δ𝜏𝐴,𝐵
4 + Δ𝜏𝐴,𝐵

5



End of First Run

Do Next Run

Save Best Tour (Sequence and length) 



Stopping criteria

 Stagnation (use, e.g., leaderboard)

 Max iterations



General ACO

 A stochastic construction procedure

 Probabilistically build a solution

 Iteratively add solution components to partial 
solutions 

- Heuristic information

- Pheromone trail

 Reinforcement Learning reminiscence

 Modify the problem representation at each iteration



General ACO

 Ants work concurrently and independently

 Collective interaction via indirect communication 
leads to good solutions



Some advantages

 Positive feedback accounts for rapid discovery of 
good solutions

 Distributed computation avoids premature 
convergence

 The greedy heuristic helps find acceptable solution 
in the early stages of the search process.

 The collective interaction of a population of agents.



Disadvantages in Ant Systems

 Possibly slow convergence 

 No centralized processor to guide the AS towards 
good solutions



Improvements to Ant Systems

 Also apply centralized actions

 ACO is a local optimization procedure

 Improve by biasing the search process with the global 
information

 Max-Min Ant System

 Pheromone values are limited

 Only the best ant(s) can add pheromones

 Sometimes uses local search to improve its performance

𝜏min ≤ 𝜏𝑖𝑗 ≤ 𝜏max



NP-hard problem defined as

• Assign n activities to n locations (campus and mall 
layout).

• 𝐷 = 𝑑𝑖,𝑗 𝑛,𝑛
, where 𝑑𝑖,𝑗 is the distance from location i to 

location j

• 𝐹 = 𝑓ℎ,𝑘 𝑛,𝑛
, where 𝑓ℎ,𝑘 is the flow from activity h to 

activity k

• Assignment is a permutation 𝜋

• Minimize:

Quadratic Assignment Problem(QAP)

𝐶(𝜋) = ෍

𝑖,𝑗=1

𝑛

𝑑𝑖𝑗𝑓𝜋(𝑖)𝜋(𝑗)



biggest flow: A - B

QAP Example

Locations Facilities

How to assign facilities to locations ?

Lower costHigher cost

A

B

C?

A

B C A B

C



SIMPLIFIED QAP

Simplification Assume all departments have equal size

Notation    distance between locations i and j

travel frequency between departments k and h

1 if department k is assigned to location i

0 otherwise

𝑑𝑖,𝑗

𝑓𝑘,ℎ

𝑋𝑖,𝑘

Example
2

1 3
4

Location

Department („Facility“)

 

1 2 3 4 
1 

2 

- 1 1 2 
2 

 

1 - 2 1 
3 1 2 - 1 
4 2 1 1 - 

 

1 2 3 4
1 - 1 3 2
2 2 - 0 1
3 1 4 - 0
4 3 1 1 -

Distance* 𝑑𝑖,𝑗 Frequency* 𝑓𝑘,ℎ

1

3

2
4



Ant System (AS-QAP)

Constructive method:

step 1: choose a facility j

step 2: assign it to a location i

Characteristics:

– each ant leaves trace (pheromone) on the chosen 

couplings (i,j)

– assignment depends on the probability (function of 

pheromone trail and a heuristic information)

– already coupled locations and facilities are inhibited (e.g., 

Tabu list)



AS-QAP   Heuristic information

Distance and Flow Potentials



















=



















=



















=



















=

80

130

110

120

0502010

5003050

2030060

1050600

           

14

12

10

6

0653

6042

5401

3210

iijiij FFDD

The coupling Matrix:

960s

720s
      

1120960800480

182015601300780

154013201100660

168014401200720

4334

1111

=•=

=•=



















=
df

df
S

Ants choose the location according to the heuristic desirability “Potential goodness” 

𝜁𝑖𝑗 =
1

𝑠𝑖𝑗



AS-QAP   Constructing the Solution

➢ The facilities are ranked in decreasing order of the flow potentials

➢ Ant k assigns the facility i to location j with the probability given by:

𝑝𝑖𝑗
𝑘 (𝑡) = ቐ

𝜏𝑖𝑗(𝑡)
𝛼𝜂𝑖𝑗

𝛽

σ
𝑙∈𝑁𝑖

𝑘 𝜏𝑖𝑗(𝑡)
𝛼𝜂𝑖𝑗

𝛽
𝑖𝑓 𝑗 ∈ 𝑁𝑖

𝑘

where 𝑁𝑖
𝑘 is the feasible neighborhood of node i

➢ Repeated until the entire assignment is found

When ant k chooses to assign facility j to location i, it leaves a trace 

“pheromone” on the coupling (i,j)



AS-QAP  Pheromone Update

Δ𝜏𝑖𝑗
𝑘 is the amount of pheromone ant k puts on the coupling (i,j)

➢ Pheromone trail update to all couplings:

𝜏𝑖𝑗 𝑡 + 1 = 𝜌 𝜏𝑖𝑗(𝑡) +෍

𝑘=1

𝑚

Δ𝜏𝑖𝑗
𝑘

Δ𝑖𝑗
𝑘 = ൞

𝑄

𝐽𝜓
𝑘 𝑖𝑓 facility i is assigned to location j in the solution of ant k

0 otherwise

𝐽𝜓
𝑘 …the objective function value

Q...the amount of pheromone deposited by ant k



Hybrid Ant System For The QAP

• Constructive algorithms often result in a poor 

solution quality compared to local search 

algorithms.

• Repeating local searches from randomly generated 

initial solution results for most problems in a 

considerable gap to optimal solution

• Hybrid algorithms combining solution constructed 

by (artificial) ant “probabilistic constructive” with 

local search algorithms yield significantly improved 

solution.



Hybrid Ant System For The QAP (HAS-QAP)

• HAS-QAP uses of the pheromone trails in a non-

standard way.  It is used to modify an existing 

solution

• Improves the ant’s solution using the local 

search algorithm.

• Intensification and diversification mechanisms.



Hybrid Ant System For The QAP (HAS-QAP)

Generate m initial solutions, each one associated to one ant

Initialise the pheromone trail

For Imax iterations repeat

For each ant k = 1,..., m do

Modify ant k;s solution using the pheromone trail

Apply a local search to the modified solution

new starting solution to ant k using an intensification mechanism

End For

Update the pheromone trail

Apply a diversification mechanism

End For



HAS-QAP Intensification& diversification mechanisms

• The intensification mechanism is activated when the best 

solution produced by the search so far has been improved.

• The diversification mechanism is activated if during the last S 

iterations no  improvement to the best generated solution is 

detected.



Particle Swarm Optimization (PSO)

• A population based stochastic optimization 

technique

• Searches for an optimal solution in the 

computable search space

• Developed in 1995 by Eberhart and 

Kennedy

• Inspired by social psychology

• Inspiration: swarms of bees, flocks of birds, 

schools of fish



PSO principles

• In PSO individuals strive to improve themselves and often 

achieve this by observing and imitating their neighbors

• Each PSO individual has the ability to remember

• PSO has simple algorithms and low overhead

– Making it more popular in some circumstances than 

Genetic/Evolutionary Algorithms

– Has only one operation calculation:

• Velocity: a vector of numbers that are added to the 

position coordinates to move an individual



PSO and social psychology

• Individuals (points) tend to 

– Move towards each other

– Influence each other

– Why?

• Individuals want to be in agreement with their 

neighbors

• Individuals (points) are influenced by:

– Their previous actions/behaviors

– The success achieved by their neighbors



What Happens in PSO

• Individuals in a population learn from previous 

experiences and the experiences of those around them

• The direction of movement is a function of:

– Current position

– Velocity (or in some models, probability)

– Location of individuals “best” success

– Location of neighbors “best” successes

– Location of globally “best” success

• Therefore, each individual in a population will gradually 

move towards the “better” areas of the problem space

• Hence, the overall population moves towards “better” 

areas of the problem space



PSO: Neighborhood

geographical

social



Particle Swarm Optimization (PSO)

 One can imagine that each particle is represented 
with two vectors,  location and velocity

 Location x = (x1, x2, ...)

 Velocity v = (v1, v2, ...)

 For locations x(t−1) and x(t) in time t-1 and t: 

 Initialization of locations and velocities (small initial 
values, e.g., one half of distance to the neighboring 
particle, random, or 0)

՜𝑣 = ՜𝑥 (𝑡) − ՜𝑥 (𝑡 − 1)



Information exchange in the swarm

Historically best location x*

Best location of informants x+

Globally best location x!



Moving particles

 In each time step, the following operations are 
executed

1. compute the fitness of each particle and update x*, x+

in x!

2. update the representation of particle

 velocity vector takes into account updated directions x*, x+

in x!

 each direction is updated with some random noise 

3. move the particle in the direction of velocity vector



Computing new position



PSO - parameters

  - proportion of current velocity vector v

  - proportion of the best value of location x*
too large value pushes towards its maximum and we get a swarm of 
greedy searchers and no group dynamics

  - proportion of the best global location x!

too large value pushes particles towards the current global maximum and 
we get a single greedy search, instead of several local searches (often we 
set this parameter to 0)

  - proportion of the best value of informants x+

the effect between  and , depends also on the number of informants: 
more informants emphasize global, less informants emphasize effect of 
local information

  - speed of particle movement
too large speed may cause too fast convergence without enough search 
(default value is 1)

 swarmsize – size of swarm (between 20 and 50)



PSO pseudocode
P = []

for (i=0 ; i < swarmsize ; i++) 

Pi = new particle with random position x and random velocity v

best = null

do {

for (i=0 ; i < swarmsize ; i++) {

compute fitness(Pi)

if ( fitness(Pi) >  fitness(best) )

best = Pi
}

for (i=0 ; i < swarmsize ; i++)  {

x* = update location of the best fitness of xi
x+ = update location of the best fitness of informants of xi
x! = update location of the best fitness of all particles

for (j=0; j < #dimensions; j++) {

b = random between 0 and 

c = random between 0 and 

d = random between 0 and 

vj = vj + b(x*j − xj)  + c(x
+
j − xj) + d(x

!
j − xj) 

}

xi = xi + v

} while (!satisfied with best or out of time)

return best



simulation 1

x

y

fitness

min

max

search space



simulation 2

x

y

search space

fitness

min

max



simulation 3

x

y

fitness

min

max

search space



simulation 4

x

y

fitness

min

max

search space



simulation 5

x

y

fitness

min

max

search space



simulation 6

x

y

fitness

min

max

search space



simulation 7

x

y

fitness

min

max

search space



simulation 8

x

y

fitness

min

max

search space



PSO characteristics

 Advantages

 Insensitive to scaling of design variables

 Simple implementation

 Easily parallelized for concurrent processing

 Derivative free

 Very few algorithm parameters

 Very efficient global search algorithm

 Disadvantages

 Tendency to a fast and premature convergence in mid optimum 
points

 Slow convergence in refined search stage (weak local search 
ability)


