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Evolutionary and natural computation

 Many engineering and computational ideas from nature work 
fantastically!

 Evolution as an algorithm

 Abstraction of the idea:

 progress, adaptation - learning, optimization

 Survival of the fittest - competition of agents, programs, solutions

 Populations – parallelization

 (Over)specialization – local extremes

 Neuro-evolution, evolution of robots, evolution of novelty

 Revival of interest



Template of evolutionary program

generate a population of agents (objects, data structures)

do {

compute fitness (quality) of the agents
select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

 immensely general -> many variants



A result of a successful evolutionary 
program



Main evolutional approaches

 Genetic algorithms

 Genetic programming

 Swarm methods (particles, ants, bees, …)

 Self-organized fields

 Differential evolution

 etc.



Genetic Algorithms - History

 Pioneered by John Holland in the 1970’s

 Got popular in the late 1980’s

 Based on ideas from Darwinian evolution

 Can be used to solve a variety of problems that 
are not easy to solve using other techniques



Chromosome, Genes and
Genomes



A fitness function



Gene representation

 Bit vector

 Numeric vectors

 Strings

 Permutations

 Trees: functions, expressions, programs

 ...



Crossover

 Single point/multipoint

 Shall preserve individual objects



Crossover: bit representation

Parents:     1101011100 0111000101

Children:   1101010101    0111001100



Crossover: vector representation

Simplest form

Parents:   (6.13, 4.89, 17.6, 8.2) (5.3, 22.9, 28.0, 3.9)

Children: (6.13 , 22.9, 28.0, 3.9)  (5.3, 4.89, 17.6, 8.2)

In reality: linear combination of parents



Linear crossover

 The linear crossover simply takes a linear 
combination of the two individuals.

 Let x = (x1,…xN) and y = (y1,…yN)

 Select α  in (0, 1)

 The results of the crossover is α x + (1- α)y .

 Possible variation: choose a different α for each 
position.



Linear crossover example

 Let α = 0.75 and we have this two individuals:

A = (5, 1, 2, 10) and B = (2, 8, 4, 5)

 Then the result of the crossover is:

(3.75 + 0.5, 0.75 + 2, 1.5 + 1, 7.5 + 1.25) = (4.25, 2.75,2.5, 8.75)

 If we use the variation and we have α = (0.5, 0.25, 0.75,
0.5), the result is:

(2.5 + 1, 0.25 + 6, 1.5 + 1, 5 + 2.5) = (3.5, 6.25, 2.5, 7.5)



Crossover: trees



Permutations: travelling salesman 
problem

 9 cities: 1,2 ..9

 bit representation using 4 bits?

 0001 0010 0011 0100 0101 0110 0111 1000 1001

 crossover would give invalid genes

 permutation and ordered crossover

 keep (part of) sequences

 use the sequence from second cut, keep already existing

1 9 2 | 4 6 5 7 | 8 3    → x x x | 4 6 5 7 | x x   2 3 9 | 4 6 5 7 | 1 8

4 5 9 | 1 8 7 6  | 2 3   → x x x | 1 8 7 6  | x x   3 9 2 | 1 8 7 6 | 4 5



A demo: Eaters

 Plant eaters are simple organisms, moving around in a 
simulated world and eating plants

 Fitness function: number of plants eaten

 An eater sees one square in front of its pointed end; it sees 4 
possible things: another eater, plant, empty square or the wall

 Actions: move forward, move backward, turn left, turn right

 It is not allowed to move into the wall or another eater

 Internal state: number between 0 and 15

 The behavior is determined by the 64 rules encoded in its 
chromosome; one rule for each of 16 states x 4 observations; 
one rule is a pair (action, next state)

 The chromosome therefore consists of length 64 x (4+2) bits = 
384 bits

 Crossover and mutation

https://math.hws.edu/eck/js/genetic-algorithm/GA.html


Mutation

 Adding new information

 Binary representation:
0111001100 --> 0011001100

 Single point/multipoint

 Random search?

 Lamarckian (searching for locally best mutation)



Gaussian mutation

 When mutating one gene, selecting the new 
value by choosing uniformly among all the 
possible values is not the best choice
(empirically).

 The mutation selects a position in the vector of 
floats and mutates it by adding a Gaussian error: 
a value extracted according to a normal 
distribution with the mean 0 and certain variance 
depending on the problem.



Template of evolutionary program

generate a population of agents (objects, data structures)

do {

compute fitness (quality) of the agents
select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

 immensely general -> many variants



Evolutional model - who will reproduce

 Keeping the good

 Prevent premature convergence

 Assure heterogeneity of population



Selection

 Proportional

 Rank proportional

 Tournament

 Single tournament



Tournament selection

1. set t=size of the tournament,
p=probability of a choice

2. randomly sample t agents from population 
forming a tournament

3. select the best with probability p 

4. select second best with probability p(1-p)

5. select third best with probability p(1-p)2

6. ...



Replacement

 All 

 According to the fitness (roulette, rang, 
tournament, randomly)

 Elitism (keep a portion of the best)

 Local elitism (children replace parents if they are 
better)



Single tournament selection

1. randomly split the population into small groups

2. apply crossover to two best agents from each 
group; their offspring replace two worst agents 
from the group

 advantage: in groups of size g the best g-2 progress 
to next generation (we do not use good agents, 
maximal quality does not decrease)

 no matter the quality even the best agents have no 
more than two offspring (we do not loose 
population diversity)

 computational load?



Population size

 small, large?



Niche specialization

 evolutionary niches are generally undesired

 punish too similar agents

f’i = fi /q(r,i)  

q(r,i) = { 1                ; sim(i) <=4, 
sim(i)/4    ; otherwise }



Stopping criteria

 number of generations, track progress, 
availability of computational resources, etc.



Why genetic algorithms work?

 building blocks hypothesis

 ... is controversial (mutations)

 sampling based hypothesis



Parameters of GA

 Encoding (into fixed length strings)

 Length of the strings;

 Size of the population;

 Selection method;

 Probability of performing crossover (pc );

 Probability of performing mutation (pm);

 Termination criteria (e.g., a number of generations, a 
leaderboard mutability, a target fitness).



Usual settings of GA parameters

 Population size: from 20–50 to a few thousands 
individuals;

 Crossover probability: high (around 0.9);

 Mutation probability: low (below 0.1).



Applications

 optimization

 scheduling

 bioinformatics, 

 machine learning

 planning

 multicriteria optimization



Where to use evolutionary algorithms?

 Many local extremes

 Just fitness, without derivations

 No specialized methods

 Multiobjective optimization

 Robustness

 Combined approaches



Multiobjective optimization

 Fitness function with several objectives

 Cost, energy, environmental impact, social 
acceptability, human friendliness

 min F(x)=min (f1(x), f2(x), ..., fn(x))

 Pareto optimal solution: we cannot improve one 
criteria without getting worse on others

 GA: in reproduction, use all criteria



An example: 
smart buildings

 simple scenario: heater, accumulator, solar 
panels, electricity from grid

 criteria: price, comfort of users (as the difference 
in temperature to the desired one)

 chromosome: shall encode schedule of charging 
and discharging the battery, heating on/off

 operational time is discretized to 15min intervals



Control problem for smart buildings

Parameters:
• the price of energy from the grid varies during the 

day
• the prediction of solar activity
• schedule of heater and battey
• usual activities of a user



Smart building: structure of the 
chromosome

 temperature: for each interval we set the desired 
temperature between Tmin and Tmax interval

 battery+: if photovoltaic panels produce enough 
energy we set: 1 charging, 0 no charging

 battery-: if photovoltaic panels do not produce 
enough energy, we set: 1 battery shall discharge, 
0 battery is not used

 appliances: each has its schedule when it is used 
(1) and when it is off (0)



Example of schedule



Example of solutions and optimal front



Pros and Cons of GA

 Pros

 Faster (and lower memory requirements) than searching a very 
large search space.

 Easy, in that if your candidate representation and fitness function 
are correct, a solution can be found without any explicit analytical 
work.

 Cons

 Randomized – not optimal or even complete.

 Can get stuck on local maxima, though crossover can help 
mitigate this.

 It can be hard to work out how best to represent a candidate as a 
bit string (or otherwise).

41



Genetic programming

 Functions, programs, expression trees

 Keep the structures valid

 Tree crossover, type closure



GP quick overview
 Developed: USA in the 1990’s

 Early names: J. Koza

 Typically applied to:

 machine learning tasks (prediction, classification…)

 controller design

 function fitting

 Attributed features:

 competes with neural nets and alike

 needs huge populations (thousands)

 slow

 Special:

 non-linear chromosomes: trees, graphs

 mutation possible but not necessary (disputed!)

 large potential, but so far did not deliver much



Neuroevolution: evolving neural 
networks

• Evolving neurons and/or topologies



Neuroevolution

 Evolving neurons: not really necessary but 
attempted

 Evolving weights instead of backpropagation and 
gradient descent

 Evolving the architecture of neural network 

 For small nets, one uses a simple matrix representing which 
neuron connects which.

 This matrix is, in turn, converted into the necessary 'genes', 
and various combinations of these are evolved.



Example: multialphabet character
recognition architrectures

https://evolution.ml/demos/cmsr/



Template of evolutionary program

generate a population of agents (objects, data structures)

do {

compute fitness (quality) of the agents
select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)



Memetic algorithms

 An attempt to merge several ideas from 
combinatorial optimization



Memetic algorithms initialization

 Using local search



Memetic algorithms - restart

 elitism and local search


