University of Ljubljana, Faculty of Computer and Information Science

Genetic

algorithms
and hybrids

Analysis of Algorithms and Heuristic Problem Solving
Version 2024

Contents

#* Introduction to evolutionary computation
Genetic algorithms

Memetic algorithm

Evolutionary and natural computation

Many engineering and computational ideas from nature work
fantastically!

Evolution as an algorithm

Abstraction of the idea:

*

X progress, adaptation - learning, optimization

Survival of the fittest - competition of agents, programs, solutions
Populations — parallelization

(Over)specialization — local extremes

Neuro-evolution, evolution of robots, evolution of novelty

* = % % »

Revival of interest

Template of evolutionary program

generate a population of agents (objects, data structures)

do §

compute fitness (quality) of the agents

select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

immensely general -> many variants

A result of a successful evolutionary
program

Solution Solution
Quality Quality
Search Space Search Space
a. The beginning search space b. The search space after

n generations

Main evolutional approaches

#* Genetic algorithms

Genetic programming

Swarm methods (particles, ants, bees, ...)
Self-organized fields

Differential evolution

* etc.

Genetic Algorithms - History

Pioneered by John Holland in the 1970’s
Got popularin the late 1980's
Based on ideas from Darwinian evolution

Can be used to solve a variety of problems that
are not easy to solve using other techniques

Chromosome, Genes and
Genomes

Chromosome

e e
[[T T T
B T 1]

Gene

Fenome
_,....-"

A fitness function

Individuals

#1 [1fofols[a]s o] .
#2 [LLLLL] - |
#3 [JaliiToliTal

Fitness

Computations

--'--- =
#
- -
P [ol:TolsTol:]a] -
l-.-.-
‘-'

Hq ARAAN ||

#n [1]:Ja]e]:To]e]

Mormalize

Ranked Individuals

He Clijofof1jo)t

Hn [olddilalilol

9 lalilelilalilo

#p Lol [lolel]

#F#1 [Jalald0a]

#3 [([il:dalTold]

Gene representation

#* Bit vector

Numeric vectors

5trings

Permutations

Trees: functions, expressions, programs

* .

Crossover

#* Single point/multipoint

Shall preserve individual objects

Crossover: bit representation

Parents: 1101011100 0111000101

Children: 1101010101 0111001100

Crossover: vector representation

Simplest form
Parents: (6.13, 4.89, 17.6, 8.2) (5.3, 22.9, 28.0, 3.9)
Children: (6.13, 22.9, 28.0, 3.9) (5.3, 4.89, 17.6, 8.2)

In reality: linear combination of parents

Linear crossover

The linear crossover simply takes a linear
combination of the two individuals.

#* Letx=(x,..xy)andy =(y,...yn)
Select a in (o, 1)
The results of the crossoveris a x + (1- a)y .

Possible variation: choose a different a for each
position.

Linear crossover example

Let a = 0.75 and we have this two individuals:
A=(51,2,10)and B=(2, 8, 4, 5)
Then the result of the crossover is:

(3.75+0.5,0.75+ 2, 1.5 +1, 7.5 + 1.25) = (4.25, 2.75,2.5, 8.75)

#* |f we use the variation and we have a = (0.5, 0.25, 0.75,
0.5), the result is:

(2.5+1,0.25+6,1.5+1, 5+ 2.5) =(3.5, 6.25, 2.5, 7.5)

Crossover: trees

Permutations: travelling salesman
oroblem

#* gcCities: 1,2 ..9
#* bit representation using 4 bits?

¢ 00010010 0011 0100 0101 0110 01111000 1001

\V4

¢ crossover would give invalid genes

\7

permutation and ordered crossover

\7
I\

keep (part of) sequences

\7

¢ use the sequence from second cut, keep already existing
192[|4657[83 2> xxx|4657[xx ¥ 239|4657[18
4591876 |23 2 xxx|1876 |xx 41392187645

A demo: Eaters

*

Plant eaters are simple organisms, moving around in a
simulated world and eating plants

Fitness function: number of plants eaten

An eater sees one square in front of its pointed end; it sees 4

* % % »

possible things: another eater, plant, empty square or the wall
Actions: move forward, move backward, turn left, turn right
It is not allowed to move into the wall or another eater
Internal state: number between o and 15

The behavior is determined by the 64 rules encoded in its
chromosome; one rule for each of 16 states x 4 observations;
one rule is a pair (action, next state)

The chromosome therefore consists of length 64 x (4+2) bits =
384 bits

Crossover and mutation

https://math.hws.edu/eck/js/genetic-algorithm/GA.html

Mutation

Adding new information

Binary representation:
0111001100 --> 0011001100

Single point/multipoint
Random search?

amarckian (searching for locally best mutation)

Gaussian mutation

When mutating one gene, selecting the new
value by choosing uniformly among all the
possible values is not the best choice
(empirically).

The mutation selects a position in the vector of
floats and mutates it by adding a Gaussian error:
a value extracted according to a normal
distribution with the mean o and certain variance
depending on the problem.

Template of evolutionary program

generate a population of agents (objects, data structures)

do §

compute fitness (quality) of the agents

select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

immensely general -> many variants

Evolutional model - who will reproduce

Keeping the good
Prevent premature convergence

Assure heterogeneity of population

Selection

Proportional
Rank proportional
#* Tournament

Single tournament

point

the roulette wheel

aneel is rotate,,

Weakest individual

$ == has smallest share of
the roulette wheel

Tournament selection

1. set t=size of the tournament,

p=probability of a choice

2. randomly sample t agents from population
forming a tournament

3. Se

4. Se

ect the best with probability p
ect second best with probability p(z2-p)
ect third best with probability p(1-p)?

Replacement

* All

According to the fitness (roulette, rang,
tournament, randomly)

Elitism (keep a portion of the best)

Local elitism (children replace parents if they are
better)

Single tournament selection

1. randomly split the population into small groups

2. apply crossover to two best agents from each
roup, their offspring replace two worst agents
rom the group

advantage: in groups of size g the best g-2 progress
to next generation (we do not use good agents,
maximal quality does not decrease)

no matter the quality even the best agents have no
more than two offspring (we do not loose
population diversity)

computational load?

Population size

#* small, large?

Niche specialization

evolutionary niches are generally undesired

#* punish too similar agents

f'. =1f /q(r,i)

q(r,i) = {2 ; sim(i) <=4,
sim(i)/4 ; otherwise}

Stopping criteria

number of generations, track progress,
availability of computational resources, etc.

Why genetic algorithms work?

#* building blocks hypothesis
#* ... is controversial (mutations)

sampling based hypothesis

Parameters of GA

Encoding (into fixed length strings)

Length of the strings;

Size of the population;

Selection method;

Probability of performing crossover (p_);
Probability of performing mutation (p,.);

Termination criteria (e.g., a number of generations, a
leaderboard mutability, a target fitness).

Usual settings of GA parameters

Population size: from 20-50 to a few thousands
individuals;

Crossover probability: high (around 0.9);

Mutation probability: low (below 0.1).

Applications

optimization

scheduling

#* bioinformatics,
machine learning
#* planning

multicriteria optimization

Where to use evolutionary algorithms?

Many local extremes

#* Just fitness, without derivations
No specialized methods

Multiobjective optimization

Robustness

Combined approaches

Multiobjective optimization

Fitness function with several objectives

Cost, energy, environmental impact, social
acceptability, human friendliness

min F(x)=min (f,(x), f,(x), ..., T.(X))

Pareto optimal solution: we cannot improve one
criteria without getting worse on others

GA: inreproduction, use all criteria

An example:
smart buildings

simple scenario: heater, accumulator, solar
panels, electricity from grid

#* criteria: price, comfort of users (as the difference
in temperature to the desired one)

chromosome: shall encode schedule of charging
and discharging the battery, heating on/off

operational time is discretized to 15min intervals

Control problem for smart buildings

Parameters:

* the price of energy from the grid varies during the
day

* the prediction of solar activity

* schedule of heater and battey

* usual activities of a user

Veckriterijski
evolucijski
algoritem
+
simulator

Neudobje

Smart building: structure of the
chromosome

temperature: for each interval we set the desired
temperature between Tmin and Tmax interval

battery+: if photovoltaic panels produce enough
energy we set: 1 charging, o no charging

battery-: if photovoltaic panels do not produce
enough energy, we set: 1 battery shall discharge,
o battery is not used

appliances: each has its schedule when it is used
(1) and when it is off (0)

Podanatemperatura

Enzrgijat

Erergija

Porabniki

Example of schedule

35

30

25

20

15

=

5

o

15 17 21 25

29 33

T

41

45 49

33

57 61 65 6% 73 77 Bl B3 8% 33 97T 101 105 109 113 117 121 125 12% 135 137 141 145 129 135 157 161 165 169 173 177 151 185 1B8%

Example of solutions and optimal front

2.22 + Vsi generirani
vrnjeni
2.2 » zacetni
» prvotna generacija
2.18
2 2.16
w]
Q
3 1"
Q
= 2.14 * o
L]
L
™ s Yo L]
212 *
*

-0.03 002 001 0 oot StroSki goz 0.03 0.04 0.05 0.06

Pros and Cons of GA

Pros

% Faster (and lower memory requirements) than searching a very
large search space.

¢ Easy, in that if your candidate representation and fitness function
are correct, a solution can be found without any explicit analytical
work.

#* Cons
% Randomized —not optimal or even complete.

% Can get stuck on local maxima, though crossover can help
mitigate this.

¢ It can be hard to work out how best to represent a candidate as a
bit string (or otherwise).

41

Genetic programming

Functions, programs, expression trees
#* Keep the structures valid

Tree crossover, type closure

GP quick overview
Developed: USA in the 1990's

Early names: J. Koza

Typically applied to:

¢ machine learning tasks (prediction, classification...)
% controller design

x function fitting

Attributed features:

¢ competes with neural nets and alike

% needs huge populations (thousands)

¢ slow

Special:

X non-linear chromosomes: trees, graphs

3¢ mutation possible but not necessary (disputed!)

large potential, but so far did not deliver much

Neuroevolution: evolving neural
networks

* Evolving neurons and/or topologies

fitness

Genetic

S e
-

. W m ¥
'-".-I' 1." o h’ *f
!\ ‘;. " -.l"'. '.‘,r‘f -1‘-\' "
. &]
&_“! .—
*,‘ ' -
¢« Environment
3 L)
a [)
~-. . 5
" - e
i - L a .". '
.o i a‘h'l‘ J‘-’.lg‘-'ﬁ‘ ."r-'-‘\
f‘ 1
» -
s action
observation

MNeural Networlk

Neuroevolution

Evolving neurons: not really necessary but
attempted

Evolving weights instead of backpropagation and
gradient descent

Evolving the architecture of neural network

x For small nets, one uses a simple matrix representing which
neuron connects which.

% This matrix s, in turn, converted into the necessary 'genes’,
and various combinations of these are evolved.

Example: multialphabet character
recognition architrectures

Latin Tifinagh Greek Mongolian Futurama Aramaic

Angelic Sanskrit Keble Cyrillic Malay Japanese Balinese Qjibwe

© Sentient Technologies

https://evolution.ml/demos/cmsr/

Template of evolutionary program

generate a population of agents (objects, data structures)

do §

compute fitness (quality) of the agents

select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

Memetic algorithms

An attempt to merge several ideas from
combinatorial optimization

Procedure Population-Based-Search-Engine;
begin
Initialize pop using GeneratelnitialPopulation();
repeat
newpop «— GenerateNewPopulation(pop);
pop < UpdatePopulation (pop, newpop);
if pop has converged then

| pop < RestartPopulation(pop);
endif

until 7erminationCriterion() ;

N 0 N N Nt bW N -

—
o

end

—
-

Memetic algorithms initialization

Using local search

o R 1 AN Ut B WY

—
&

Procedure GeneratelnitialPopulation;
begin

end

Initialize pop using EmptyPopulation();

for j «— 1 to popsize do

1 <+ GenerateRandomConfiguration();

i — Local-Search-Engine (7);
InsertInPopulation individual i to pop;
endfor

return pop;

Memetic algorithms - restart

elitism and local search

N=REe RN - NV | I 7 I O I

ke
_ W N =D

[—y
wun

Procedure RestartPopulation (pop);
begin

end

Initialize newpop using EmptyPopulation();
#preserved — popsize - Jopreserve;
for j — I to #preserved do
| — ExtractBestFromPopulation(pop);
InsertInPopulation individual i to newpop:;
endfor
for j < #preserved + 1 to popsize do
i «—— GenerateRandomConfiguration();
i <+ Local-Search-Engine (7);
InsertInPopulation individual i to new pop;
endfor
return newpop;

