
Optimization and local search

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Analysis of Algorithms and Heuristic Problem Solving
Version 2024

Search

• search is a basic problem solving mechanism

• many algorithms can be viewed as search algorithms

• problem states

• state space (reachable states form a graph, often searched as a tree)

• connections between states

• a neighborhood generator N(S)

};{
*

SSS Z ⎯→⎯=S

State space representation

•State space: 𝑺 = 𝑆; 𝑆0
∗

S

•Starting state: 𝑆0

•Quality of a state: 𝑞(𝑆)

•Global optimum: 𝑆𝑏𝑒𝑠𝑡 = argmin
𝑆∈𝑺

𝑞(𝑆)

• Local optimum: 𝑺𝑙𝑜𝑐𝑎𝑙 = {𝑆; ∀𝑆 𝑆′: 𝑞 𝑆 ≤ 𝑞(𝑆′)}

3

Properties of local search

• Local search, LS;

• Local optimization, LO

• LS starts in a randomly generated state (solution) and tries to optimize
it using local transformations

• The set of transformations determines the complexity of the
algorithm

• Algorithm reruns return different solutions

• Ergo: repeat LS and return the overall best solution

LS basic scheme

LS(S0) { // S0 is a starting state

S = Sm = S0

do {

N(S) = {S’; S0 → S’}

S = arg minS’N(So) q(S’)

if (q(S) < q(Sm))

Sm = S

else
break ;

} while (true) ;

return(Sm) ;

}

LS problems

• local and global extremes,

• plato,

• ridge

Local
extremes

Plato

Ridge

Gradient descent (GD)

• Gradient descent is an efficient local optimization in ℝ𝑛

• Local minimum of function f: ℝ𝑛 → ℝ is a point x
for which f(x) ≤ f(x′) for all x′ that are “near” x

• Gradient ∇𝑓 𝑥 is a function ∇𝑓: ℝ𝑛 → ℝ𝑛 comprising n
partial derivatives:

∇𝑓 𝑥 = (
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
)

• The GD minimization moves in the direction of -∇𝑓 𝑥

Ilustration of GD

GD algorithm

GRADIENT-DESCENT(f, x0, γ, T) {

// function f, initial value x0, fixed step size γ, number of steps T

x_best = x = x0 ; // n-dimensional vectors, initially set to the initial value

f_best = f_x = f(x_best) ;

for t = 0 to T – 1 do {

x_next = x – γ・ ∇f(x); // ∇f(x), x, and x_next are n-dimensional

f_next = f(x_next)

if (f_next < f_x)

x_best = x_next ;

x = x_next ;

f_x = f_next ;

}

return x_best ;

}

GD for convex functions

• For convex f, the GD finds the global optimum

• Function f: ℝ𝑛 → ℝ is convex if for all x, y ∈ ℝ𝑛 and for all 0 ≤ λ ≤
1, we have

𝑓 𝜆𝑋 + 1 − 𝜆 𝑦 ≤ 𝜆𝑓 𝑥 + 1 − 𝜆 𝑓(𝑦)

14

Metropolis algorithm and simulated
annealing

• GeneralizationS of greedy LS

• If a better neighbor exists, move to it

• Otherwise, choose a random neighbor, but accept better
neighbors with larger probability

• Decrease the probability of acceptance with time

• In time, stochastic search turns into deterministic LS

15

Physical background

• Idea from thermodynamics – trying to find a state with minimum energy

• Boltzmann distribution law says that the probability of a system being in a
state with energy Ei is proportional to:

where T is a temperature and k a positive constant.

• Therefore, the probability of a low energy state is larger if the temperature
is lower

• To reach a low energy state, i.e. a nice crystal (optimal state), the molten
matter has to be cooled slowly

• Cooling too fast gives a suboptimal state (imperfect crystal). The slower we
cool the matter, the more probable we get a nice crystal (but the
algorithm will be slower).

kT

E

i

i

eEP
−

=)(

16

Simulated annealing (SA)
- the idea

• Use the idea of finding low energy states to introduce stochastic
element to LS

• Next state is selected stochastically

• Better neighbors are selected with higher probability

• Use temperature as a knob for stochastic behavior

• Larger temperature implies larger probability for acceptance of worse
neighbor and vice versa

• With T = 0, the algorithm is deterministic

17

SA search

• Start with a random state S

• Select random neighbor S’

• If q(S’) < q(S), move to S’ with probability 1

• Otherwise move to S’ with probability

T

SqSq

eSSP

))()'((

)'(

−−

=→

Metropolis algorithm

Metropolis(S0, T) { // S0 is a starting state, T is a temperature

S = Sm= S0 ;

do {

select S’ randomly from neighborhood N(S) = {S’; S → S’}

if (q(S’) < q(Sm))

Sm = S’ ;

if (q(S’) < q(S))

S = S’ ; // move

else

with probability make a move S = S’

} while (! stopping condition) ;

return(Sm) ;

}

T

SqSq

e

))()'((−−

19

Annealing
• Decrease temperature while it is not close to zero

• Slower decreasing will cause searching of a larger
portion of the search space and will increase the
probability of the optimal state

• Usually, a geometrical rule to decrease temperature is
used

• Typically:  = 0.95

• End with a deterministic LS

10,' = TT

Algorithm SA

SA(S0, , T) { // S0 is a starting state,  is annealing schedule, T is the starting temperature

S = Sm= S0 ;

do {

randomly select S’ from N(S) = {S’; S → S’}

if (q(S’) < q(Sm))

Sm = S’ ;

if (q(S’) < q(S))

S = S’ ; // move

else {

with probability make a move S = S’

T =  T ;

}
} while (! stopping criterion) ;

Sm = LS(Sm) ; // end with pure LS

return(Sm) ;

}

T

SqSq

e

))()'((−−

Max-cut and LS

• state space representation

• define neighborhoods

• proof of LS being a 2-approximation algorithm

Max-cut algorithm with LS

Neighborhood selection

• Large enough not to stop too fast in a local extreme

• Small enough not to be too computationally expensive

• An example: K-L heuristics for max-cut

Best reponse dynamics

•Multicast routing problem

•Each agents searches the best solution for himself
(selfishness)

•Stability of solutions and Nash equilibrium

•Relation to local search

•Social choice

•Price of stability

•Based on J. Kleinberg, E. Tardos: Algorithm Design.
Pearson, 2006 (chapter 12)

Directing multiple agents

• provable that the algorithm reaches the Nash equilibrium
• we define a function which strictly decreases in each step

