University of Ljubljana, Faculty of Computer and Information Science

Optimization and local search

flx.y)

N SR — TR VR < R i) SR~
VI A ;

Prof Dr Marko Robnik-Sikonja

Analysis of Algorithms and Heuristic Problem Solving

Version 2024

Search

* search is a basic problem solving mechanism

* many algorithms can be viewed as search algorithms

* problem states

* state space (reachable states form a graph, often searched as a tree)

S={S;S, —>S}

e connections between states
* a neighborhood generator N(S)

State space representation

e State space: § = {S; SO—>S}
* Starting state: S

* Quality of a state: q(S)

* Global optimum: Sy, = arg rglelgl q(S)

* Local optimum: S;,.q; = {S; VS—S5":q(S) < q(S5)}

Properties of local search

* Local search, LS;
* Local optimization, LO

e LS starts in a randomly generated state (solution) and tries to optimize
it using local transformations

* The set of transformations determines the complexity of the
algorithm

* Algorithm reruns return different solutions

* Ergo: repeat LS and return the overall best solution

LS basic scheme

LS(S,) {// S, is a starting state
S=S.,=5,
do {
N(S)={S"; S, > S’}
S =arg ming o) A(S’)
if (q(S) < a(S,))
S =S

else
break ;

} while (true) ;
return(S,,);

}

LS problems

* local and global extremes,
* plato,
* ridge

Local
extremes

Plato

XA 7]
il

2252 4
22
SRR T7711]
ZRRALAL
294D [/
L

Ridge

Gradient descent (GD)

* Gradient descent is an efficient local optimization in R"

* Local minimum of function f: R™ - R is a point x
for which f(x) < f(x’) for all x’ that are “near” x

* Gradient Vf (x) is a function Vf: R™ > R" comprising n
partial derivatives:
of of of

V) = G g

* The GD minimization moves in the direction of -Vf (x)

llustration of GD

D)

GD algorithm

GRADIENT-DESCENT(f, x0, y, T) {
// function f, initial value x0, fixed step size y, number of steps T
X_best = x = x0 ; // n-dimensional vectors, initially set to the initial value
f best=f x=f(x_best);
fort=0toT-1do{
x_next=x-vy = Vf(x); // Vf(x), x, and x_next are n-dimensional
f next = f(x_next)
if (f_next<f x)
X_best = x_next ;
X =x_next;
f x=f next;
}

return x_best ;

}

GD for convex functions

* For convex f, the GD finds the global optimum

* Function f: R™ > Ris convex if for all x, y € R™® and forall 0 <A <
1, we have

FOX+(1-Dy) <Af () + (A —DfW)

A /
f(x)e AF(X)+(1—=24) f(y)
; B
®
OV 01— 1) fiv)
0-"“\ (I—A)y) 3
- —p -
- - « - Y - S ,_ e |
X AX+(1—=A)y & y ; y - (V)(x'?)

YV -y (VNHx®)
a7 —y AV)xD)

——F 1 (VNP)

" x @) XU) X(Z) \(_I) \IFU)

Y

Metropolis algorithm and simulated
annealing

* GeneralizationS of greedy LS
* If a better neighbor exists, move to it

* Otherwise, choose a random neighbor, but accept better
neighbors with larger probability

* Decrease the probability of acceptance with time
* |In time, stochastic search turns into deterministic LS

Physical background

* |dea from thermodynamics — trying to find a state with minimum energy

* Boltzmann distribution law says that the probability of a system being in a
state with energy E. is proportional to:
E.

_Si
_ KT
P(E,)=e
where T is a temperature and k a positive constant.

* Therefore, the probability of a low energy state is larger if the temperature
is lower

* To reach a low energy state, i.e. a nice crystal (optimal state), the molten
matter has to be cooled slowly

* Cooling too fast gives a suboptimal state (imperfect crystal). The slower we
cool the matter, the more probable we get a nice crystal (but the
algorithm will be slower).

Simulated annealing (SA)
- the idea

* Use the idea of finding low energy states to introduce stochastic
element to LS

* Next state is selected stochastically
* Better neighbors are selected with higher probability
* Use temperature as a knob for stochastic behavior

» Larger temperature implies larger probability for acceptance of worse
neighbor and vice versa

* With T =0, the algorithm is deterministic

SA search

e Start with a random state S

* Select random neighbor S’

 If q(S”) < q(S), move to S" with probability 1
* Otherwise move to S’ with probability

~(a(s)-a())
P(S—>S')=e T

Metropolis algorithm

Metropolis(S,, T) { // S, is a starting state, T is a temperature
$=S5,.=5;;
do {
select S’ randomly from neighborhood N(S) ={S’; S = S’}

if (a(S') <alSy))

S,.=5;
if (a($') <a(S))
5= //move —(q(S")-q(S))
else T
with probability e make a move S =5’

} while (! stopping condition) ;
return(S,);

}

Annealing

* Decrease temperature while it is not close to zero

 Slower decreasing will cause searching of a larger
portion of the search space and will increase the
probability of the optimal state

* Usually, a geometrical rule to decrease temperature is
used

T'=AT, O0<A<1

 Typically: A = 0.95
* End with a deterministic LS

Algorithm SA

SA(Sy, A, T) {// S, is a starting state, A is annealing schedule, T is the starting temperature
S=S,_=S,;
do {
randomly select S’ from N(S) ={S"; S - S’}
if (q(S") < a(S,))
S, =5;
if (q(S’) <q(S))
S=S":// move :
else { —(a(S)—-q(S))

with probability e T make a move S =S’

T=AT;

} while (! stopping criterion) ;
S, = LS(S,,,) ; // end with pure LS
return(S,,);

}

Max-cut and LS

* state space representation
 define neighborhoods
 proof of LS being a 2-approximation algorithm

Max-cut algorithm with LS

Max-Cut-Local (G, w) {
Pick a random node partition (A, B)

while (d improving node v) {
1if (v 1is 1n A) move v to B
else move v to A

}

return (A, B)

Neighborhood selection

* Large enough not to stop too fast in a local extreme
* Small enough not to be too computationally expensive
* An example: K-L heuristics for max-cut

Best reponse dynamics

* Multicast routing problem

* Each agents searches the best solution for himself
(selfishness)

e Stability of solutions and Nash equilibrium
* Relation to local search

* Social choice

* Price of stability

* Based on J. Kleinberg, E. Tardos: Algorithm Design.
Pearson, 2006 (chapter 12)

Multicast Routing

Multicast routing. Given a directed graph G = (V, E) with edge costs
¢, = 0, a source node s, and k agents located at terminal nodes t;, ..., T,.
Agent j must construct a path P; from node s to its terminal 1;.

Fair share. If x agents use edge e, they each pay c, / x.

EREREE

outer outer

outer middle 4 5+1
middle outer 5+1

middle middle 5/2+1 5/2+1

Nash Equilibrium

Best response dynamics. Each agent is continually prepared to improve
its solution in response to changes made by other agents.

Nash equilibrium. Solution where no agent has an incentive to switch.

Fundamental question. When do Nash equilibria exist?

. Two agents start with outer paths.

. Agent 1 has no incentive to switch paths

(since 4 <5 + 1), but agent 2 does (since 8 >5 + 1). |
. Once this happens, agent 1 prefers middle /(‘D\

path (since 4>5/2 + 1). 1 1
. Both agents using middle path is a Nash

equilibrium.

Directing multiple agents

Best-Response-Dynamics (G, c) {
Pick a path for each agent

while (not a Nash equilibrium) {
Pick an agent i who can improve by switching paths
Switch path of agent 1

* provable that the algorithm reaches the Nash equilibrium
» we define a function which strictly decreases in each step

Socially Optimum

Social optimum. Minimizes total cost to all agent.

Observation. In general, there can be many Nash equilibria. Even when
its unique, it does not necessarily equal the social optimum.

@7

3 b 5
1+¢ k A
v 1 1
k agents @,7

Social optimum = 1 +¢
Nash equilibrium A =1+¢
Nash equilibrium B = k

Social optimum = 7
Unique Nash equilibrium = 8

Price of Stability

Price of stability. Ratio of best Nash equilibrium to social optimum.

Fundamental question. What is price of stability?

Ex: Price of stability = ©(log k).
Social optimum. Everyone takes bottom paths.

Unique Nash equilibrium. Everyone takes top paths.
Price of stability. H(k) / (1 + ¢).

! s
1+1/2+ .. +1/k

1 /2 1/3 1/k

