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Search

• search is a basic problem solving mechanism

• many algorithms can be viewed as search algorithms

• problem states

• state space (reachable states form a graph, often searched as a tree)

• connections between states

• a neighborhood generator N(S)
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State space representation

•State space:  𝑺 = 𝑆; 𝑆0
∗

S

•Starting state: 𝑆0

•Quality of a state: 𝑞(𝑆)

•Global optimum: 𝑆𝑏𝑒𝑠𝑡 = argmin
𝑆∈𝑺

𝑞(𝑆)

• Local optimum: 𝑺𝑙𝑜𝑐𝑎𝑙 = {𝑆; ∀𝑆 𝑆′: 𝑞 𝑆 ≤ 𝑞(𝑆′)}

3



Properties of local search

• Local search, LS; 

• Local optimization, LO

• LS starts in a randomly generated state (solution) and tries to optimize 
it using local transformations

• The set of transformations determines the complexity of the 
algorithm

• Algorithm reruns return different solutions

• Ergo: repeat LS and return the overall best solution



LS basic scheme

LS(S0) { // S0 is a starting state

S = Sm = S0

do {

N(S) = {S’; S0 → S’}

S = arg minS’N(So) q(S’)

if ( q(S) < q(Sm) )

Sm = S

else 
break ;

} while (true) ;

return( Sm ) ;

}



LS problems

• local and global extremes,

• plato, 

• ridge
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Gradient descent (GD)

• Gradient descent is an efficient local optimization in ℝ𝑛

• Local minimum of  function f: ℝ𝑛 → ℝ is a point x
for which f(x) ≤ f(x′) for all x′ that are “near” x

• Gradient ∇𝑓 𝑥 is a function ∇𝑓: ℝ𝑛 → ℝ𝑛 comprising n
partial derivatives: 

∇𝑓 𝑥 = (
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
)

• The GD minimization moves in the direction of -∇𝑓 𝑥



Ilustration of GD



GD algorithm

GRADIENT-DESCENT(f, x0, γ, T) {

// function f,  initial value x0, fixed step size γ, number of steps T

x_best = x = x0 ; // n-dimensional vectors, initially set to the initial value

f_best = f_x = f(x_best) ;

for t = 0 to T – 1 do {

x_next = x – γ・ ∇f(x); // ∇f(x), x, and x_next are n-dimensional

f_next = f(x_next)

if (f_next < f_x)

x_best = x_next ; 

x = x_next ;

f_x = f_next ;

}

return x_best ;

}



GD for convex functions

• For convex f, the GD finds the global optimum

• Function f: ℝ𝑛 → ℝ is convex if for all x, y ∈ ℝ𝑛 and for all 0 ≤ λ ≤ 
1, we have

𝑓 𝜆𝑋 + 1 − 𝜆 𝑦 ≤ 𝜆𝑓 𝑥 + 1 − 𝜆 𝑓(𝑦)
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Metropolis algorithm and simulated 
annealing

• GeneralizationS of greedy LS

• If a better neighbor exists, move to it 

• Otherwise, choose a random neighbor, but accept better 
neighbors with larger probability

• Decrease the probability of acceptance with time

• In time, stochastic search turns into deterministic LS
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Physical background

• Idea from thermodynamics – trying to find a state with minimum energy

• Boltzmann distribution law says that the probability of a system being in a 
state with energy Ei is proportional to:

where T  is a temperature and k a positive constant.

• Therefore, the probability of a low energy state is larger if the temperature 
is lower

• To reach a low energy state, i.e. a nice crystal (optimal state), the molten 
matter has to be cooled slowly

• Cooling too fast gives a suboptimal state (imperfect crystal). The slower we 
cool the matter, the more probable we get a nice crystal (but the 
algorithm will be slower).
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Simulated annealing (SA)
- the idea

• Use the idea of finding low energy states to introduce stochastic 
element to LS

• Next state is selected stochastically

• Better neighbors are selected with higher probability

• Use temperature as a knob for stochastic behavior

• Larger temperature implies larger probability for acceptance of worse 
neighbor and vice versa

• With T = 0, the algorithm is deterministic
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SA search

• Start with a random state S

• Select random neighbor S’

• If q(S’) < q(S), move to S’ with probability 1

• Otherwise move to S’ with probability
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Metropolis algorithm

Metropolis(S0, T) { // S0 is a starting state, T is a temperature

S = Sm= S0 ; 

do {

select S’ randomly from neighborhood N(S) = {S’; S → S’}

if ( q(S’) < q(Sm) ) 

Sm = S’ ; 

if ( q(S’) < q(S) ) 

S = S’ ; // move 

else 

with probability                             make a move S = S’

} while (! stopping condition) ;

return( Sm ) ;

}
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Annealing
• Decrease temperature while it is not close to zero

• Slower decreasing will cause searching of a larger 
portion of the search space and will increase the 
probability of the optimal state

• Usually, a geometrical rule to decrease temperature is 
used

• Typically:  = 0.95

• End with a deterministic LS
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Algorithm SA

SA(S0, , T) { // S0 is a starting state,  is annealing schedule, T is the starting temperature

S = Sm= S0 ; 

do {

randomly select S’ from N(S) = {S’; S → S’}

if ( q(S’) < q(Sm) ) 

Sm = S’ ; 

if ( q(S’) < q(S) ) 

S = S’ ; // move 

else {

with probability                            make a move S = S’

T =  T ;

}
} while (! stopping criterion) ;

Sm = LS(Sm) ;  // end with pure LS

return( Sm ) ;

}
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Max-cut and LS

• state space representation

• define neighborhoods

• proof of LS being a 2-approximation algorithm



Max-cut algorithm with LS



Neighborhood selection

• Large enough not to stop too fast in a local extreme

• Small enough not to be too computationally expensive

• An example: K-L heuristics for max-cut



Best reponse dynamics

•Multicast routing problem

•Each agents searches the best solution for himself 
(selfishness)

•Stability of solutions and Nash equilibrium

•Relation to local search

•Social choice

•Price of stability

•Based on J. Kleinberg, E. Tardos: Algorithm Design. 
Pearson, 2006 (chapter 12)







Directing multiple agents

• provable that the algorithm reaches the Nash equilibrium
• we define a function which strictly decreases in each step






