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Shared and distributed memory
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Problems with parallel execution

» deadlock: each member of a group is waiting for another member,
including itself, to take action

* happens under the following Coffman conditions

* mutual exclusion: at least one resource is held in a non-shareable mode (e.g.,
entering a critical section)

* hold and wait (resource holding): a process is holding at least one resource
and requesting additional resources which are being held by other processes.

* no preemption: a resource can be released only voluntarily by the process
holding it.

e circular wait: each process must be waiting for a resource which is being held
by another process, which in turn is waiting for the first process to release the
resource

* livelock: two or more processes continually repeat the same
interaction in response to changes in the other processes without
doing any useful work.

* starvation: some resource may always be allocated to some process

* race conditions and synchronization: system attempts to perform two
or more operations at the same time, but the operations must be
done in the proper sequence to be done correctly.



Race conditions

* deterministic and nondeterministic multithreaded programs

void Race() {

intx=0;
parallel for i=1to 2

X=X+1;
print X ;

}



Low level synchronization mechanisms

* monitor: a mechanism that allows threads to have both mutual
exclusion and the ability to wait (block) for a certain condition to
become false. Monitors also have a mechanism for signaling other

threads that their condition has been met.

* semaphore: a (counting) variable controlling access to a common
resource

e atomic operations: program operations that cannot be preemptied



Dynamic threads

* simplified programming,

* top-level parallelism

* three new constructs: parallel, spawn, sync
* simplified complexity analysis

e platforms: Cilk, Cilk++, OpenMP, Task Parallel Library (.NET),
Threading Building Blocks(C++, Intel), JOMP, JPPF (Java)



OMP elements
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Example: Fibonacci numbers

F =0 * T(n) = T(n-1) + T(n-2) + ©(1)
F,=1 * solution T(n) = O(t")
F,=F,.1tF.,zan>=2 T=(1+\/5)/2

int fib (int n) {
if (n <= 1)
return n ;
else {
int x = fib(n-1) ;
int vy = fib(n-2) ;

return x + vy ;

}
}



Multithreaded Fibonacci

int pFib (int n) {
if (n <= 1)
return n ;
else {
int x = spawn pFib(n-1) ;

int y = pFib(n-2) ;
sync

return x + vy ;

}
}

* nested parallelism
e scheduler



Fibonacci with OpenMP

int pFib (int n) {
if (n <= 1)
return n ;
else {
int x, y ;
# pragma omp sections public(x, V)
{
fpragma omp section
X = pFib(n-1) ;

#pragma omp section

} y = pFib(n-2) ;

return x + vy ;

}
}



Multithreaded computational model
used in computational complexity analysis

* acyclic directed graph

* equal processors

* no resources for scheduling

* total time, time of parallel tasks

e critical path

* number of processors P, time for P processors T,
* Ty Ty



Parallel speedup

* in one step, using P processors, we finish P units of work, in time
T, we do P-T, units

* total work is T,, note that P-T, > T,

* speedup rule: T,>T, /P

calsoTp =T,

* speedup or level of parallelismisT, /T, <P
* linear speedup T, /T, =©® (P)

* ideal linear speedup T, /T, =P



Analysis of parallel algorithms

A
— > A |—> B | —> < >
B

Work: Ty (AU B) = T,(A) + T,(B) Work: T/ (AU B) =T,(A) + T,(B)
Span: Ty, (AU B) = T, (A) + Ty (B) Span: Too(AU B) = max(T(A), T (B))
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Analysis of parallel algorithms

* Fibonacci
* Ty(n) = Ty(n-1) + T4(n-2) ) + ©(1)

* T (n)=max(T,(n-1), T, (n-2))+O(1)
=T_(n-1) + ©(1)
= ©O(n)



Limits of parallelization

e Amdahl’s law

* speedupS=T,/T,
* f = proportion of parallelizable code

1
OS —
f
pt(1-1)

* et us compute speedup for 2, 5, 10, oo, processors and f=0.9, 0.5,
0.1



Amdahl’s law
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Gustafson’s law

e processing time (on each processor) is split to
T, =a+ b (ais sequential time, b = parallel time)
Sequential share of work a = a/(a+b)

1- ais a share of parallel work

e assumption: using more parallel units, we can solve larger problems (or
more problems in the same time), the size of problems grows linearly
with P, therefore T, =a + P-b

* speedup S, = (a+P-b)/(a+b)=a+P(1—-a)=P-a (P-1)
* for small a the speedup is almost linear in P



Speedup - S(P)

Speedup by Gustafson

Gustafson's Law: S(P) = P-a*(P-1)
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Two views of parallel speedup,
Amdahl and Gustafson

 Amdabhl: if we travel to a destination 100km away and we used 1
hour for one half of the distance, the total average time will never
reach 100km/h, no matter how fast we travel the second half

» Gustafson: suppose you travel for some time with a speed lower
than 100km/h; if the distance is long enough and there is enough
time available, you can still reach arbitrary average speed; e.g., if
you travel 1 hour with the speed 50km/h and continue the next
hour with 150km/h, the total average speed will be 100km/h (or
you can travel next half an hour with 200km/h)



* Example: multiplication of a matrix and

void mat_vec(matrix A, vector x) {

}

Loop parallelization

vectory = A X

int n =A.rows ;
// let the length of y be n
fori=1ton
y,=0;
fori=1ton
forj=1ton
yi=yi+Aij*Xj}
returny;

void mat_vec(matrix A, vector x) {
int n = A.rows ;
// let the length of y be n
parallel fori=1ton
y,=0;
parallel fori=1ton
forj=1ton
yi:yi"'Aij*Xj}
returny ;

}

high-level parallelization



Loop parallelization: actual schedule
// the code, a compiler would generate for the main loop
void mat_vec_main_loop(matrix A, vector x, vectory, n, i, k) {
if (i == k) {
forj=1ton
yi=yi+Aij*xj;
}

else {
mid = (i+ k) / 2 ; // the floor
spawn mat_vec_main_loop(A, X, y, n, i, mid)
mat_vec_main_loop(A, x, y, n, mid+1, k)

sync

}

The compiler might generate more coarse parallelization



