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Architecture of multi-core processor
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Shared and distributed memory
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Problems with parallel execution
• deadlock: each member of a group is waiting for another member, 

including itself, to take action

• happens under the following Coffman conditions 
• mutual exclusion: at least one resource is held in a non-shareable mode (e.g., 

entering a critical section)
• hold and wait (resource holding): a process is holding at least one resource 

and requesting additional resources which are being held by other processes.
• no preemption: a resource can be released only voluntarily by the process 

holding it.
• circular wait: each process must be waiting for a resource which is being held 

by another process, which in turn is waiting for the first process to release the 
resource

• livelock: two or more processes continually repeat the same 
interaction in response to changes in the other processes without 
doing any useful work.

• starvation: some resource may always be allocated to some process

• race conditions and synchronization: system attempts to perform two 
or more operations at the same time, but the operations must be 
done in the proper sequence to be done correctly.
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Race conditions

• deterministic and nondeterministic multithreaded programs

void Race() {

int x = 0 ;
parallel for i=1 to 2

x = x +1 ;

print x ;

}
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Low level synchronization mechanisms 

• monitor:  a mechanism that allows threads to have both mutual 
exclusion and the ability to wait (block) for a certain condition to 
become false. Monitors also have a mechanism for signaling other 
threads that their condition has been met. 

• semaphore:  a (counting) variable controlling access to a common 
resource 

• atomic operations: program operations that cannot be preemptied
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Dynamic threads

• simplified programming,

• top-level parallelism

• three new constructs: parallel, spawn, sync

• simplified complexity analysis

• platforms: Cilk, Cilk++, OpenMP, Task Parallel Library (.NET), 
Threading Building Blocks(C++, Intel), JOMP, JPPF (Java)
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OMP elements
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Example: Fibonacci numbers

F0 = 0

F1 = 1

Fn = Fn-1 + Fn-2 za n >= 2

int fib (int n){

if (n <= 1)

return n ;

else {

int x = fib(n-1) ;

int y = fib(n-2) ;

return x + y ;
}

}

• T(n) = T(n-1) + T(n-2) + (1)

• solution T(n) = (n)
 = (1 + 5)/2
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Multithreaded Fibonacci

int pFib (int n){

if (n <= 1)

return n ;

else {

int x = spawn pFib(n-1) ;

int y = pFib(n-2) ;

sync

return x + y ;

}

}

• nested parallelism

• scheduler
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Fibonacci with OpenMP

int pFib (int n){

if (n <= 1)

return n ;

else {

int x, y ;

# pragma omp sections public(x, y)

{

#pragma omp section

x = pFib(n-1) ;

#pragma omp section

y = pFib(n-2) ;
}

return x + y ;
}

}
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Multithreaded computational model
used in computational complexity analysis

• acyclic directed graph

• equal processors

• no resources for scheduling

• total time, time of parallel tasks

• critical path

• number of processors P, time for P processors TP

• T1, T
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Parallel speedup

• in one step, using P processors, we finish P units of work, in time  
TP we do P·TP units

• total work is T1, note that P·TP  T1

• speedup rule: TP  T1 / P

• also TP  T
• speedup or level of parallelism is T1  / TP ≤ P

• linear speedup  T1  / TP  =  (P)

• ideal linear speedup T1  / TP  = P
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Analysis of parallel algorithms
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• Fibonacci

• T1(n) =  T1(n-1) + T1(n-2) ) + (1) 

• T(n) = max( T(n-1) , T(n-2) ) + (1) 

= T(n-1) + (1) 

= (n) 
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Limits of parallelization

• Amdahl’s law

• speedup S = T1 / TP

• f = proportion of parallelizable code

•𝑆 =
1

𝑓

𝑃
+(1−𝑓)

• let us compute speedup for 2, 5, 10, , processors and  f=0.9, 0.5, 
0.1
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Amdahl’s law
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Gustafson’s law

• processing time (on each processor) is split to 
T1 = a + b (a is sequential time, b = parallel time)
Sequential share of work α = a/(a+b)
1 - α is a share of parallel work 

• assumption: using more parallel units, we can solve larger problems (or 
more problems in the same time), the size of problems grows linearly 
with P, therefore T1 = a + P·b

• speedup SP = (a + P·b)/(a+b) = α + P(1 – α) = P – α ( P - 1)

• for small α the speedup is almost linear in P
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Speedup by Gustafson
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Two views of parallel speedup,  
Amdahl and Gustafson

• Amdahl: if we travel to a destination 100km away and we used 1 
hour for one half of the distance, the total average time will never 
reach 100km/h, no matter how fast we travel the second half

• Gustafson: suppose you travel for some time with a speed lower 
than 100km/h; if the distance is long enough and there is enough 
time available, you can still reach arbitrary average speed; e.g., if 
you travel 1 hour with the speed 50km/h and continue the next 
hour with 150km/h, the total average speed will be 100km/h (or 
you can travel next half an hour with 200km/h)



Loop parallelization

• Example: multiplication of a matrix and 
vector y = A x

void mat_vec(matrix A, vector x) {

int n = A.rows ;

// let the length of y be n

for i = 1 to n

yi = 0 ;

for i = 1 to n

for j = 1 to n

yi = yi + Aij * xj ;

return y ;

}

void mat_vec(matrix A, vector x) {

int n = A.rows ;

// let the length of y be n   

parallel for i = 1 to n

yi = 0 ;

parallel for i = 1 to n

for j = 1 to n

yi = yi + Aij * xj ;

return y ;

}

high-level parallelization



Loop parallelization: actual schedule
// the code, a compiler would generate for the main loop

void mat_vec_main_loop(matrix A, vector x, vector y, n, i, k) {

if (i == k) { 

for j = 1 to n

yi = yi + Aij * xj ;

}

else {

mid = (i + k) / 2 ; // the floor

spawn mat_vec_main_loop(A, x, y, n, i, mid)     

mat_vec_main_loop(A, x, y, n, mid+1, k)     

sync

}

}

The compiler might generate more coarse parallelization


