
Computational complexity of
multithreaded algorithms

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja
Analysis of Algorithms and Heuristic Problem Solving

Edition 2024

2

Architecture of multi-core processor

3

Shared and distributed memory

4

Problems with parallel execution
• deadlock: each member of a group is waiting for another member,

including itself, to take action

• happens under the following Coffman conditions
• mutual exclusion: at least one resource is held in a non-shareable mode (e.g.,

entering a critical section)
• hold and wait (resource holding): a process is holding at least one resource

and requesting additional resources which are being held by other processes.
• no preemption: a resource can be released only voluntarily by the process

holding it.
• circular wait: each process must be waiting for a resource which is being held

by another process, which in turn is waiting for the first process to release the
resource

• livelock: two or more processes continually repeat the same
interaction in response to changes in the other processes without
doing any useful work.

• starvation: some resource may always be allocated to some process

• race conditions and synchronization: system attempts to perform two
or more operations at the same time, but the operations must be
done in the proper sequence to be done correctly.

5

Race conditions

• deterministic and nondeterministic multithreaded programs

void Race() {

int x = 0 ;
parallel for i=1 to 2

x = x +1 ;

print x ;

}

6

Low level synchronization mechanisms

• monitor: a mechanism that allows threads to have both mutual
exclusion and the ability to wait (block) for a certain condition to
become false. Monitors also have a mechanism for signaling other
threads that their condition has been met.

• semaphore: a (counting) variable controlling access to a common
resource

• atomic operations: program operations that cannot be preemptied

7

Dynamic threads

• simplified programming,

• top-level parallelism

• three new constructs: parallel, spawn, sync

• simplified complexity analysis

• platforms: Cilk, Cilk++, OpenMP, Task Parallel Library (.NET),
Threading Building Blocks(C++, Intel), JOMP, JPPF (Java)

8

OMP elements

9

Example: Fibonacci numbers

F0 = 0

F1 = 1

Fn = Fn-1 + Fn-2 za n >= 2

int fib (int n){

if (n <= 1)

return n ;

else {

int x = fib(n-1) ;

int y = fib(n-2) ;

return x + y ;
}

}

• T(n) = T(n-1) + T(n-2) + (1)

• solution T(n) = (n)
 = (1 + 5)/2

10

Multithreaded Fibonacci

int pFib (int n){

if (n <= 1)

return n ;

else {

int x = spawn pFib(n-1) ;

int y = pFib(n-2) ;

sync

return x + y ;

}

}

• nested parallelism

• scheduler

11

Fibonacci with OpenMP

int pFib (int n){

if (n <= 1)

return n ;

else {

int x, y ;

pragma omp sections public(x, y)

{

#pragma omp section

x = pFib(n-1) ;

#pragma omp section

y = pFib(n-2) ;
}

return x + y ;
}

}

12

Multithreaded computational model
used in computational complexity analysis

• acyclic directed graph

• equal processors

• no resources for scheduling

• total time, time of parallel tasks

• critical path

• number of processors P, time for P processors TP

• T1, T

13

Parallel speedup

• in one step, using P processors, we finish P units of work, in time
TP we do P·TP units

• total work is T1, note that P·TP  T1

• speedup rule: TP  T1 / P

• also TP  T
• speedup or level of parallelism is T1 / TP ≤ P

• linear speedup T1 / TP =  (P)

• ideal linear speedup T1 / TP = P

14

Analysis of parallel algorithms

15

• Fibonacci

• T1(n) = T1(n-1) + T1(n-2)) + (1)

• T(n) = max(T(n-1) , T(n-2)) + (1)

= T(n-1) + (1)

= (n)

16

Limits of parallelization

• Amdahl’s law

• speedup S = T1 / TP

• f = proportion of parallelizable code

•𝑆 =
1

𝑓

𝑃
+(1−𝑓)

• let us compute speedup for 2, 5, 10, , processors and f=0.9, 0.5,
0.1

17

Amdahl’s law

18

Gustafson’s law

• processing time (on each processor) is split to
T1 = a + b (a is sequential time, b = parallel time)
Sequential share of work α = a/(a+b)
1 - α is a share of parallel work

• assumption: using more parallel units, we can solve larger problems (or
more problems in the same time), the size of problems grows linearly
with P, therefore T1 = a + P·b

• speedup SP = (a + P·b)/(a+b) = α + P(1 – α) = P – α (P - 1)

• for small α the speedup is almost linear in P

19

Speedup by Gustafson

20

Two views of parallel speedup,
Amdahl and Gustafson

• Amdahl: if we travel to a destination 100km away and we used 1
hour for one half of the distance, the total average time will never
reach 100km/h, no matter how fast we travel the second half

• Gustafson: suppose you travel for some time with a speed lower
than 100km/h; if the distance is long enough and there is enough
time available, you can still reach arbitrary average speed; e.g., if
you travel 1 hour with the speed 50km/h and continue the next
hour with 150km/h, the total average speed will be 100km/h (or
you can travel next half an hour with 200km/h)

Loop parallelization

• Example: multiplication of a matrix and
vector y = A x

void mat_vec(matrix A, vector x) {

int n = A.rows ;

// let the length of y be n

for i = 1 to n

yi = 0 ;

for i = 1 to n

for j = 1 to n

yi = yi + Aij * xj ;

return y ;

}

void mat_vec(matrix A, vector x) {

int n = A.rows ;

// let the length of y be n

parallel for i = 1 to n

yi = 0 ;

parallel for i = 1 to n

for j = 1 to n

yi = yi + Aij * xj ;

return y ;

}

high-level parallelization

Loop parallelization: actual schedule
// the code, a compiler would generate for the main loop

void mat_vec_main_loop(matrix A, vector x, vector y, n, i, k) {

if (i == k) {

for j = 1 to n

yi = yi + Aij * xj ;

}

else {

mid = (i + k) / 2 ; // the floor

spawn mat_vec_main_loop(A, x, y, n, i, mid)

mat_vec_main_loop(A, x, y, n, mid+1, k)

sync

}

}

The compiler might generate more coarse parallelization

