
Probabilistic Analysis and Randomized
Algorithms

Prof Marko Robnik-Šikonja

Analysis of Algorithms and Heuristic Problem Solving
Edition 2024

University of Ljubljana, Faculty of Computer and Information Science

2

Finding maximum

findMax(n) {
fbest = -∞ ;
for (i=1 ; i <= n ; i++) {

fi = check(A[i]) ;
if (fi > fbest) {

fbest = fi ;
process(A[i]) ;

}
}

}

• O(n·ccheck + m·cprocess)

• worst case analysis

• probabilistic analysis

• randomization

3

Probabilistic analysis

• assumptions about the input distributions

• indicator random variables

4

Randomization

• to avoid “bad” input sequences, we intentionally randomize the
input

void findMax(n) {

randomly shuffle elements in A
fbest = 0 ;
for (i=1 ; i <= n ; i++) {

fi = check(A[i]) ;
if (fi > fbest) {

fbest = fi ;
process(A[i]) ;

}
}

}

5

Randomize the input

6

Randomize the input

7

On-line maximum

• on-line maximum: elements arrive one by one, randomly shuffled;
we can check them but we can select only one

8

Find online maximum

findMaxOnline(k, n) {
fbest = -∞ ;
for (i=1 ; i <= k ; i++) {

if (score(i) > fbest)
fbest = fi ;

}
for (i=k+1 ; i <= n ; i++) {

if (score(i) > fbest)
return(i) ;

}
return(n) ;

}

• How to select k, that we shall select the
best one with the largest probability?

• What is the probability that we select the
best one using this strategy?

Summation bounds

• The sumation of monotonously increasing function f(x)

on an interval from m to n can be bounded by integrals

• The following figures give an explanation

Lower bound

Upper bound

Monotonically decreasing function

• Similarly to monotonically increasing function, we can show the
following relation for monotonically decreasing function

Bounding harmonic series

• In our proof we used harmonic series which is monotonically
decreasing therefore

14

Graph min-cut

Contraction algorithm:

repeat {
select random edge e=(u,v)
contract e:

replace u and v with super-node w
keep connections of u and v also for w
keep parallel edges, but not loops

}
until (graph has only two nodes v1 and v2)
return cut defined by v1

• randomized algorithm

• probabilistic analysis

15

Introduction to pseudo-random numbers

16

Applications of pseudo random
numbers

• computer simulations

• cryptography

• statistical sampling and estimation

• Monte Carlo methods

• data analysis and modelling

• computer games

• games of chance

• hardware and software generators

• quality of (pseudo)random numbers: speed and randomness

17

Matlab example

• P. Savicky: A strong nonrandom pattern in Matlab default random number
generator. Technical Report, Institute of Computer Science, Academy of Sciences
of Czech Republic (2006)

Z = rand(28,100000);
condition = Z(1,:) < 1/4;
scatter(Z(16,condition),Z(28,condition),’.’);

18

Example

• Value-at-Risk (financial analysis)
B. D. McCullough: A Review of TESTU01.
Journal of Applied Econometrics, 21: 677–682 (2006)

19

Quality criteria

• randomness

• speed of generator

• period

20

Linear congruential generators

• simplest and most common
xi = (a· xi-1 + c) mod m ui = xi / m

• A notorious example:
RANDU:
xi = 65539·xi-1 mod 231

• simple but bad

21

MINSTD

• used as a standard for a long time
xi = 16807·xi-1 mod (231-1)

i xi decimal xi binary

1 1 1

2 16807 100000110100111

3 282475249 10000110101100011101011110001

4 1622650073 1100000101101111010110011011001

5 984943658 111010101101010000110000101010

6

22

Combined linear congruential generator

• combinations of linear congruential generators

• improvements: addition, subtraction, bit mixing

• better randomness, small period

23

Multiple recursive generators

• higher order recursions
xi = (a1·xi-1 + ... + ak·xi-k) mod m
ui = xi / m

• e.g., (Knuth, 1998):
xi = (271828183 ·xi-1 + 314159269·xi-2) mod (231-1)

• combined multiple recursive generators

24

Other generators

• combinations

• non-linear generators (quadratic, multiplicative, floating point
generators, inverse generators)

• (linear) recursive bit generators (modulo 2, operators)

• cryptographic (ISAAC, AES, BBS,…)

• AES http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

25

BBS (Blum-Blum-Shrub)

• bit generator

• select two large prime integers p and q (e.g., at least 40 decimal
places)

• let m = pq

• Xi = Xi-1
2 mod m

• bi = parity(Xi) (0 if even, 1 if odd)

• finding dependency is equivalent to factorization of m (finding
multipliers p and q).

• Currently there is no polynomial non-quantum algorithm for
integer factorization but it is not proven that such an algorithm
does not exist

• the numbers are therefore currently random enough for most
uses

26

Criteria of randomness

• generate a sequence of t numbers, ui (0, 1)

• hypothesis
u0, u1,…ut-1 are independent uniformly distributed random variables
U(0,1)

• equivalent:
vector (u0, u1,…ut-1)
is uniformly randomly distributed in unit hypercube (0,1)t

• equivalent: sequence of independent random bits

27

Statistical tests for randomness

• infinitely many possible tests

• only show dependencies, cannot prove that dependencies
do not exists

• increase of trust

• “The difference between the good and bad RNGs, in
a nutshell, is that the bad ones fail very simple tests
whereas the good ones fail only very complicated
tests that are hard to figure out or impractical to run.”
L’Ecuyer and Simard, 2007. TestU01: A C Library for Empirical Testing of
Random Number Generators. ACM Transactions on Mathematical Software.

28

An example of a test

• Pearson‘s Х2 goodness-of-fit test
• put generated numbers into k cells

(e.g., two-dimensional grid)
• for each cell we know the expected

number of elements Ei

• let Oi be the observed number of
samples from each cell

• statistics

• if hypothesis of uniform distribution of numbers is true,
the statistics Х0

2 is chi-squared distributed with k-1 degrees of
freedom

• we reject the hypothesis if Х0
2 > Х2

α,k-p-1


=

−
=

k

i i

ii

E

EO

1

2
2)(
0

29

Ideas of statistical tests

• one sequence of numbers:
• tests of groups,
• gaps,
• increasing subsequences

• several sequences, hypercube partitioning
• statistics on partitions
• statistics on distances

• one sequence of bits
• cryptographic tests,
• compressiveness,
• spectral tests (Fourier),
• autocorrelation

• several bit sequences

30

A toolbox of tests

• L’Ecuyer and Simard, 2007. TestU01: A C Library
for Empirical Testing of Random Number
Generators. ACM Transactions on Mathematical
Software.
http://simul.iro.umontreal.ca/testu01/tu01.html

• results: not many generators pass all tests

•poor results for some popular software (Excel,
MATLAB, Mathematica, Java)

• improvements in recent years, e.g.,
https://www.pcg-random.org/

•hardware generators

http://simul.iro.umontreal.ca/testu01/tu01.html
https://www.pcg-random.org/

