
Computational Complexity

Prof Dr Marko Robnik Šikonja
Analysis of Algorithms and Heuristic Problem Solving

Edition 2023

University of Ljubljana, Faculty of Computer and Information Science



Asymptotically tight bound 

• Given function g(n), we denote with (g(n)) a set of functions:

• (g(n)) = { f(n); c1, c2, n0 > 0, n > n0:  0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)}

• notation used is f(n)  (g(n))  and more frequently f(n) = (g(n)) 

• g(n) is asymptotically tight bound for f(n)

• assumption: g(n) is asymptotically positive function

2



(g(n))

3



An example

• Let us show that ½ n2 – 3n = (n2) 

• find c1, c2, n0

• Home work: 
• show that an2 + bn + c = (n2) 

• show for all polynomials p(n), 𝑝 𝑛 = σ𝑖=0
𝑑 𝑎𝑖𝑛

𝑖 , 𝑎𝑑 > 0, that  p(n) = (nd) 

• show 6n3 ≠ (n2)

• we denote constant function as (n0)= (1) 

4



Asymptotical upper bound O

• for functions g(n) we write O(g(n)) to be a set of functions for which the 
following holds:

• O(g(n)) = { f(n); c, n0 > 0, n > n0: 0 ≤ f(n) ≤ cg(n) }

• we use notation f(n)  O(g(n)) or more frequently f(n) = O(g(n)) 

• g(n) is asymptotical upper bound for f(n)

• attention! the literature tend to be imprecise in this notation  

• use also as an anonymous function, for example 
T(n) = 2 T(n/2) + O(n)

5



O(g(n))

6



Alternative definitions

• for upper bound

𝑓 𝑛 = 𝑂 𝑔 𝑛 ⟺
lim

𝑛 → ∞
|𝑓 𝑛 |

𝑔(𝑛)
< ∞ and the limit exists

7



Examples

• Show ½ n2 – 3n = O(n2) 

• Show at home: 
• an2 + bn + c = O(n2)

• an + c = O(n2)

8



Asymptotical lower bound 

• For function g(n) we write (g(n)) to be a set of functions:

• (g(n)) = { f(n); c, n0 > 0, n > n0: 0 ≤ cg(n) ≤ f(n) }

• notation f(n)  (g(n)) or more frequently f(n) = (g(n)) 

• g(n) is asymptotical lower bound for  f(n)

• attention, the literature might be imprecise

9



(g(n))

10



Relations between asymptotical bounds

• for functions f(n) and g(n) it holds:

• f(n) = (g(n)) if and only if f(n) = O(g(n)) and f(n) = (g(n))

11



Imprecise boundaries, notations o and 

• o(g(n)) = { f(n); c > 0, n0 > 0, n > n0: 0 ≤ f(n) < cg(n) }

• e.g., 7n = o(n2)  in 3n2 ≠ o(n2) 

• o(g(n)) is an imprecise upper bound

• f(n) = 𝑜(g(n))  ↔ lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 0

• (g(n)) = { f(n); c > 0, n0 > 0, n > n0: 0 ≤  cg(n) < f(n)}

• e.g., n2 = (n)  and 3n ≠ (n) 

• (g(n)) is an imprecise lower bound

• f(n) = (g(n)) ↔ lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= ∞

12



Properties of asymptotic bounds1/2

• transitivity

f(n) = (g(n))  g(n) = (h(n))  f(n) = (h(n)) 

f(n) = O(g(n))  g(n) = O(h(n))  f(n) = O(h(n)) 

f(n) = (g(n))  g(n) = (h(n))  f(n) = (h(n)) 

f(n) = o(g(n))  g(n) = o(h(n))  f(n) = o(h(n)) 

f(n) = (g(n))  g(n) = (h(n))  f(n) = (h(n)) 

• reflexivity

f(n) = (f(n)) 

f(n) = O(f(n))

f(n) = (f(n))

13



Properties of asymptotic bounds 2/2

• symmetry

f(n) = (g(n))  g(n) = (f(n)) 

• transpose symmetry 

f(n) = O(g(n))  g(n) = (f(n)) 

f(n) = o(g(n))  g(n) = (f(n))

• analogy with numbers 

f(n) = O(g(n))   a≤b

f(n) = (g(n))   a≥b

...

• but not trichotomy  

e.g., between two numbers exactly one of the following relations  
holds a<b, a=b, a>b 

why not for asymptotic function bounds?

14



Divide and conquer algorithms

• Idea:
• divide the problem into several (equal) parts

• (recursively) conquer (solve) each of the sub problems 

• combine sub problem solutions

• An example: maximum subarray problem

15



Maximum subarray problem

// maximal subarray of array A[low…high] crossing the point mid

findMaxCrossingSubarray(A, low, mid, high) {     
leftSum = -∞ ; sum = 0 ;
for (i = mid ; i >= low ; i--) {

sum = sum + A[i] ;
if (sum > leftSum) {

leftSum = sum ;
maxLeft = i ;

}
}
rightSum = -∞ ; sum = 0 ;

for (j = mid +1; j <= high ; j++) {
sum = sum + A[j] ;
if (sum > rightSum) {
rightSum = sum ;
maxRight = j ;
}

}
return (maxLeft, maxRight, leftSum + rightSum) ;

} 16



// maximal subarray of array A[low…high] 

findMaxSubarray(A, low, high) {     

if (low == high) // boundary condition

return (low, high, A[low]) ;

else {

mid = (low + high) / 2 ;

(leftLow, leftHigh, leftSum) = findMaxSubarray(A, low, mid) ;

(rightLow, rightHigh, rightSum) = findMaxSubarray(A, mid+1, high) ;

(crossLow, crossHigh, crossSum) = findMaxCrossingSubarray(A, low, mid, high) ;

if (leftSum >= rightSum && leftSum >= crossSum)

return (leftLow, leftHigh, leftSum) ;

else if (rightSum >= leftSum && rightSum >= crossSum)

return (rightLow, rightHigh, rightSum) ;

else return (crossLow, crossHigh, crossSum) ;

}

}
17



Kadane algorithm

• idea: for each position compute the maximum subarray result for the subarray 
ending at given position

findMaxSubarrayKadane(A) {     

maxEndingHere = 0 ; 

maxSoFar = 0 ;

for (i=1 ; i <= A.length ; i ++) {

maxEndingHere = max(0, maxEndingHere + A[i]) ;

maxSoFar = max(maxSoFar, maxEndingHere) ;

}

return maxSoFar ;

}

18



Four approaches to the analysis of divide-
and-conquer algorithms

• substitution method: 
• guess the solution 

• using induction find the constants and prove the solution is valid (requires 
some practice and knowledge of some tricks)

• recursive tree: 
• draw recursion tree and sum complexity level-wise and altogether;

• prove with induction that the result is correct

• master theorem 

• Akra-Bazzi theorem

19



Master theorem

• for divide and conquer algorithms

• assume constants 𝑎 ≥ 1, 𝑏 > 1, a function 𝑓 𝑛

• 𝑇 𝑛 is defined for nonnegative integers with recurrent equation
T(n) = aT(n/b) + f(n),

where  𝑛/𝑏 is either 𝑛/𝑏 or 𝑛/𝑏 . T(n) has the following asymptotic bounds

𝑇 𝑛 = 𝜃(𝑛log𝑏 𝑎) ; 𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎−𝜀 for constant 𝜀 > 0

𝑇 𝑛 = 𝜃(𝑛log𝑏 𝑎 log 𝑛)
; 𝑓 𝑛 = 𝜃 𝑛log𝑏 𝑎

𝑇 𝑛 = 𝜃(𝑓 𝑛 )
; 𝑓 𝑛 =  𝑛log𝑏 𝑎+𝜀 for constant 𝜀 > 0,

if 𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑓 𝑛 , for constant 𝑐 < 1, and all large enough 𝑛

20



Using the master theorem

• examples when it works

• and when it doesn‘t

21



Akra-Bazzi theorem

(Mohamad Akra and Louay Bazzi, 1998)

Let

T x =
𝜃(1) ; 1 ≤ 𝑥 ≤ 𝑥0

σ𝑖=1
𝑘 𝑎𝑖𝑇 𝑏𝑖𝑥 + 𝑓(𝑥) ; 𝑥 > 𝑥0

, where

• real number x >= 1,

• constant x0 >= 1/bi and x0 >= 1/(1-bi) for i = 1, 2, …, k

• ai is a positive constant for i = 1, 2, …, k

• bi is constant 0 < bi < 1 for i = 1, 2, …, k

• k >= 1 is an integer constant

• f(x) is nonnegative function satisfying polynomial growth condition: there 
exist positive constants c1 and c2 such that for all  x>=1 and for i = 1, 2, …, 
k, for all u for which bix <= u <= x it holds  c1 f(x) <= f(u) <= c2f(x). 
Alternatively: if  |f’(x)| is upper bounded by polynomial of x, then f(x) 
satisfies polynomial growth condition.

• real number p is the only solution of equation σ𝑖=1
𝑘 𝑎𝑖𝑏𝑖

𝑝
= 1

Then the solution of the recursion is 

T x = θ(𝑥𝑝(1 + 1׬
𝑥 𝑓(𝑢)

𝑢𝑝+1
𝑑𝑢)).

22



Akra-Bazzi theorem – the strong form
Let

T x =
𝜃(1) ; 1 ≤ 𝑥 ≤ 𝑥0

σ𝑖=1
𝑘 𝑎𝑖𝑇 𝑏𝑖𝑥 + ℎ𝑖(𝑥) + 𝑓(𝑥) ; 𝑥 > 𝑥0

, where

• real number x >= 1,

• constant x0 >= max(bi, 1/bi) for i = 1, 2, …, k

• ai is a positive constant for i = 1, 2, …, k

• bi is constant 0 < bi < 1 for i = 1, 2, …, k

• k >= 1 is an integer constant

• |f(x)| = O(xc) for any c N

• |hi(x)| = O(
𝑥

log2𝑥
) 

• real number p is the only solution of equation σ𝑖=1
𝑘 𝑎𝑖𝑏𝑖

𝑝
= 1

Then the solution of the recursion is 

T x = θ(𝑥𝑝(1 + 1׬
𝑥 𝑓(𝑢)

𝑢𝑝+1
𝑑𝑢)).

23


