
Analysis of Algorithms and Heuristic
Problem Solving

Ljubljana, Edition 2024

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Lecturer

• Prof Dr Marko Robnik-Šikonja

• marko.robnik@fri.uni-lj.si

• FRI, Večna pot 113, room 2.06, 2nd floor, right from the elevator

• (01) 4798 241

• Contact hour (see webpage)
• currently, Wednesdays, 14:00 - 15:00 or by arrangement, best to email me

• https://fri.uni-lj.si/en/employees/marko-robnik-sikonja

• Research interests:
machine learning, artificial intelligence, natural language processing,
network analytics, algorithms and data structures

2

mailto:marko.robnik@fri.uni-lj.si
https://fri.uni-lj.si/en/employees/marko-robnik-sikonja

Assistant

• Dr Matej Pičulin
matej.piculin@fri.uni-lj.si

• Laboratory for Cognitive Modeling

• tutorials mainly in the form of consultations;
please, prepare questions!

3

mailto:matej.piculin@fri.uni-lj.si

4

Objectives

• Students shall become acquainted with
• the analysis of algorithms, at foremost computational complexity,

• techniques for efficient solving of difficult problems, requiring
optimization techniques and approximations.

• Practical use of theoretical knowledge on (almost) real-world
problems.

• Increase the problem-solving toolbox with
• new techniques for analysis of algorithms,

• heuristic optimization algorithms.

• For a given optimization problem, students
shall be able to
• select one of the appropriate methods,

• construct a solution prototype.

5

Lectures and tutorials

• Lectures:
• introduction to the topic, discussion,
• some examples,
• broader view of the topic.

• Tutorials:
• exercises,

• assignments motivated by practical use,
• assistant presents the assignments, helps with tips,

moderates discussion so…
• … come prepared and pose questions.

• Introduce some problem solving tools and useful
software.

6

Syllabus

• 1st part:
• computational complexity,

• analysis of algorithms,

• some problems turn out to be too difficult for solving exactly, so we need
approximation methods and heuristic approaches,

• 2nd part:
• heuristic programming,

• introduction to some heuristic approaches using
• operation research approaches,

• population techniques

• metaheuristics

• machine learning

• how to approach real-world problems.

7

More details
Lecture topics:

1. Analysis of recursive algorithms: recursive tree method, substitution method,
solution for divide and conquer approach, Akra-Bazzi method.

2. Probabilistic analysis: definition, analysis of stochastic algorithms.

3. Randomization of algorithms.

4. Amortized analysis of algorithm complexity.

5. Solving linear recurrences.

6. Analysis of multithreaded, parallel and distributed algorithms.

7. Linear programming for problem solving.

8. Combinatorial optimization, local search, simulated annealing.

9. Metaheuristics and stochastic search: guided local search, variable
neighbourhood search, and tabu search.

10. Memetic algorithms, particle swarm optimization, grey wolf, whales, bees,
etc.

11. Differential evolution.

12. Machine learning for combinatorial optimization.

13. Many (almost) practical problems interspersed within other topics

8

Obligations

• 5 quizzes checking continuous work; obtaining at
least 50% of points altogether is necessary,

•5 assignments of different difficulty, practical and
theoretical assignments, written reports, one
assignment is in the form of competition and
public presentation,

•written exam.

9

Learning materials

• learning materials in the eClassroom
http://ucilnica.fri.uni-lj.si

• practical work in open-source system R,

• optionally in Python, java, C/C++

10

http://ucilnica.fri.uni-lj.si/

Readings

• T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to
Algorithms, 4th edition. MIT Press, 2022

• M. Gendreau, J-Y. Potvin (Eds.): Handbook of Metaheuristics, 2nd

edition. Springer 2010

Further readings:

• R. Sedgewick, P. Flajolet: An Introduction to the Analysis of
Algorithms. Addison-Wesley, 1995

• scientific papers, some on eClassroom

11

Review of existing
knowledge on

computational complexity

12

Find the computational complexity

s=0 ;

for (i=1; i <= n ; i++)

s=s+a[i];

13

s=0 ;

for (i=1; i <= n ; i++)

for (j=1; j <= n ; j++)

s = s+t[i][j];

14

s=0 ;

for (i = 1; i <= n ; i += m)

s = s + a[i];

15

for (i=1; i <= n ; i++)

for (j=1 ; j <= n ; j++)
for (k=1 ; k <= n ; k++)

if (i + j + k < a)

G[i][j] = A[i][j]+B[i][k]*C[k][j];

16

for (i=1; i <= n ; i++)

if (i < a)

for (j=1 ; j <= n ; j++)
for (k=1 ; k <= n ; k++)

G[i][j] = A[i][j]+B[i][k]*C[k][j];

17

int i = n ;

int r =0 ;

while (i >1) {

r = r+1 ;

i = i / 2 ;

}

18

19

public static void loopRek(int m, int n)

{
if (n == 1)

System.out.println(“+”) ;

else

for (int i=0; i < m ; i++)

loopRek(m, n-1) ;

}

20

public static void infix(Node p)

{

if (p != null) {
infix(p.left) ;

System.out.print(p.key) ;

infix(p.right) ;

}

}

struct Node {
int key ;
Node left, right ;

}

first determine the parameter of complexity

max = a[1] ;

for (i=2 ; i <= n ; i++)

if (max < a[i])

max = a[i] ;

System.out.print(max) ;

21

max = a[1] ;

for (i=2 ; i <= n ; i++)

if (max < a[i]) {

max = a[i] ;

veryComplexOperation(max)

}

System.out.print(max) ;

22

void p(int n, int m) {

int i,j,k ;

if (n > 0) {

for (i=0 ; i < m ; i++)

for (j=0 ; j < m ; j++)

if (i < j – a)

for (k=0 ; k < m ; k++)

System.out.println(i + j * k) ;

p(n/m, m) ;

}

}

23

Analysis of algorithms

• How complex is the algorithm?

• How many resources it requires?

• How much time, memory, etc. will the computer need?

• Resources: time, memory, network accesses, other hardware

24

A simple model of computer - RAM

• RAM – abstract uniprocessor machine with random access to the
memory (RAM –Random-Access Machine)

• operations and their price (execution time, memory, etc.):

• typical operations: arithmetical and logical operations, memory
operations, control

• each operation uses a constant amount of time

• integers and floating-point numbers

• numbers use a limited amount of memory; for example number n
takes at most c log2(n) bits, where constant c >= 1 (what if it is not
constant)

• we assume constant time for some other operations as well, e.g.,
logarithms, exponents, trigonometrical operations

• we do not consider parallelism, pipelines, memory hierarchies

• RAM is (good enough) approximation for real world computers

25

Input size

• define for each problem separately
• size of an input, e.g., array

• number of bits in input

• size of graph (nodes, edges)

• number of steps taken,

• etc.

26

Execution time

• number of steps of the abstract machine

• for simpler analysis, we assume that each line of pseudocode
requires a constant time (except function calls),

• so line i requires ci time

27

An example: insertion sort

• execution time depends on input (number of elements, their initial
positions)

• time: number of steps of abstract machine

• for the sake of simplicity, we assume a constant execution time for
each line of pseudo-code, i.e., line i takes ci time, where ci is
constant larger or equal zero

• idea: iteratively increase the sorted part of an array, by inserting
unsorted elements into the already sorted part

28

Pseudocode

InsertionSort(A) {
1 for j = 2 to A.length
2 key = A[j] ;
3 // insert A[j] into sorted array A[1..j-1]
4 i = j-1 ;
5 while i > 0 and A[i] > key
6 A[i+1] = A[i] ;
7 i = i -1 ;
8 A[i+1] = key ;

29

Count the operations

30

Sum together

• number of operations depends on the input

31

Best case

• the best case is when the array is already sorted, then
tj = 1, for j = 2,3,...,n and we get a linear dependency on n

32

Worst case
• worst case occurs when the array is sorted in reversed order, then

tj = j, for j=2,3, ..., n and we get

33

which can be expressed as a quadratic dependency
T(n) = an2 + bn + c

Analysis

• we mostly analyze worst and average case complexities; why?

• we are rarely interested in actual constant and settle for the order of
growth,

• in this case only the fastest growing terms are important, others are
asymptotically unimportant,

• the worst case for the insertion sort is (n2)

34

Differences between the orders of complexity

n

10

100

1.000

10.000

100.000

1.000.000

35

Differences between the orders of complexity

n n

3 10

10 100

31 1.000

100 10.000

316 100.000

1.000 1.000.000

36

log10(n) n n

1 3 10

2 10 100

3 31 1.000

4 100 10.000

5 316 100.000

6 1.000 1.000.000

37

Differences between the orders of complexity

Differences between the orders of complexity

log10(n) n n n·log10(n)

1 3 10 10

2 10 100 200

3 31 1.000 3.000

4 100 10.000 40.000

5 316 100.000 500.000

6 1.000 1.000.000 6.000.000

38

Differences between the orders of complexity

log10(n) n n n·log10(n) n2

1 3 10 10 100

2 10 100 200 10.000

3 31 1.000 3.000 1.000.000

4 100 10.000 40.000 108

5 316 100.000 500.000 1010

6 1.000 1.000.000 6.000.000 1012

39

Differences between the orders of complexity

log10(n) n n n·log10(n) n2 n3

1 3 10 10 100 1000

2 10 100 200 10.000 1.000.000

3 31 1.000 3.000 1.000.000 109

4 100 10.000 40.000 108 1012

5 316 100.000 500.000 1010 1015

6 1.000 1.000.000 6.000.000 1012 1018

40

Differences between the orders of complexity

log10(n) n n n·log10(n) n2 n3 2n

1 3 10 10 100 1000 1024

2 10 100 200 10.000 1.000.000 1.25· 1030

3 31 1.000 3.000 1.000.000 109
10301

4 100 10.000 40.000 108 1012
2 · 103.010

5 316 100.000 500.000 1010 1015 1030.103

6 1.000 1.000.000 6.000.000 1012 1018
10301.030

41

