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Exact 
Exponential 
Algorithms

of non-parameterized instances of in-
tractable problems? At first glance, the 
general case of an NP-complete prob-
lem is a formidable opponent: when 
faced with a problem whose instances 

Many computational problems have been shown to be 
intractable, either in the strong sense that no 
algorithm exists at all—the canonical example being 
the undecidability of the Halting Problem—or that no 
efficient algorithm exists. From a theoretical 
perspective perhaps the most intriguing case occurs 
with the family of NP-complete problems, for which it 
is not known whether the problems are intractable. 
That is, despite extensive research, neither is an 
efficient algorithm known, nor has the existence of 
one been rigorously ruled out.16

To cope with intractability, advanced techniques 
such as parameterized algorithms10,13,31 (that isolate the 
exponential complexity to a specific structural 
parameter of a problem instance) and approximation 
algorithms34 (that produce a solution whose value  
is guaranteed to be within a known factor of the  
value of an optimum solution) have been developed.  
But what can we say about finding exact solutions 

 key insights

 � �While it remains open whether or not 
P equals NP, significant progress in 
the area of exhaustive search has been 
made in the last few years. In particular, 
many NP-complete problems can 
now be solved significantly faster by 
exhaustive search. The area of exact 
exponential algorithms studies the 
design of such techniques.

 � �While many exact exponential 
algorithms date back to the early days 
of computing, a number of beautiful 
surprises have emerged recently.
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Discovering surprises in  
the face of intractability.
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can express arbitrary nondeterministic 
computation, how is one to proceed at 
solving a given instance, apart from the 
obvious exhaustive search that “tries out 
all the possibilities”?

Fortunately, the study of algorithms 
knows many positive surprises. Com-
putation is malleable in nontrivial 
ways, and subtle algorithmically ex-
ploitable structure has been discov-
ered where none was thought to ex-
ist. Furthermore, the more generous 
a time budget the algorithm design-
er has, the more techniques be-
come available. Especially so if the 
budget is exponential in the size of 
the input. Thus, absent complexity-
theoretic obstacles, one should be 
able to do better than exhaustive 

search. This is the objective of exact 
exponential algorithms.15

Arguably, the oldest design techni
que to improve upon exhaustive search 
is branching or backtrack search,18,35 
which recursively splits the exhaustive 
search space, attempting to infer in the 
process that parts of the space need 
not be visited. For recent applications 
of branching techniques, we refer to 
Eppstein12 and Fomin et al.14 Another 
classical design technique is dynamic 
programming,2 which derives a solution 
from the bottom up by storing solu-
tions of  smaller subproblems and 
combining them via a recurrence rela-
tion to progressively yield solutions of 
larger subproblems. These two tech-
niques in many cases give significant 

improvements over plain exhaustive 
search, but in other cases, no improve-
ment at all upon exhaustive search has 
been available, and many problems 
remain with this status.

In what follows, we do not try to give 
a comprehensive survey of exact expo-
nential algorithms. Indeed, even list-
ing the most significant results would 
require a format different from this 
review. Instead, we have chosen to 
review the area by highlighting three 
recent results. In each case, research 
had been essentially stuck for an 
extended period of time—in one case 
for almost 50 years!—and it was con-
ceivable that perhaps no improvement 
could be obtained over the known algo-
rithms. But computation has the power 
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to surprise, and in this article we hope 
to convey some of the excitement sur-
rounding each result. We also find 
these results particularly appealing 
because they are a posteriori quite 
accessible compared with many of the 
deep results in theoretical computer 
science, and yet they illustrate the sub-
tle ways in which computation can be 
orchestrated to solve a problem.

Three NP-Complete Problems
The three problems we discuss in more 
detail are Maximum 2-Satisfiability, 
Graph Coloring, and Hamiltonian Path. 
We start by giving an overview of previ-
ous approaches to attack each prob-
lem, and then in the subsequent 
sections discuss the novel algorithms.

MAX-2-SAT. The satisfiability problem 
takes as input a logical expression built 
from n variables x1, x2, …, xn and the 
Boolean connectives ¬ (NOT), ∨ (OR), 
and ∧ (AND). The task is to decide 
whether the expression can be satisfied 
by assigning a truth value, either 
0  (false) or 1 (true), to each variable 
such that the expression evaluates to 1. 
For example, the expression

� (1)

can be satisfied by setting x1 = 1 and 
x2 = 0, whereas the expression

(2)

is not satisfiable.
It is customary to assume that the 

input expression is in conjunctive nor-
mal form, where it is required that the 
expression is the AND of clauses, each 
of which is an OR of literals, which are 
variables or negations of variables. If all 
clauses have k literals, then the expres-
sion is in k-conjunctive normal form, or 
k-CNF. For example, (1) is in 2-CNF and 
(2) is in 3-CNF. The satisfiability 

problem for an expression in k-CNF is 
called the k-CNF satisfiability or k-SAT 
problem. It is polynomial-time solvable 
for k ≤ 2 and NP-complete for k ≥ 3.17

A stronger variant of the problem, 
maximum k-CNF satisfiability or 
MAX-k-SAT, gives a threshold t as addi-
tional input, and the task is to decide 
whether there is an assignment of 
truth values to the variables such that 
at least t clauses evaluate to 1. This vari-
ant is NP-complete for all k ≥ 2.17

MAX-k-SAT is trivially solvable by try-
ing all possible truth assignments. 
When a formula has n variables, it has 2n 
possible assignments and for each 
assignment we can compute in polyno-
mial time how many clauses are satis-
fied. Thus, the total running time, up to 
a factor polynomial in n, is dominated 
by 2n. A special case of the problem, 
known as MAX-CUT, can be obtained by 
formulating MAX-2-SAT as a problem of 
partitioning the vertices of an n-vertex 
graph into two subsets such that at least 
t edges cross between subsets. However, 
even in the special cases of MAX-2-SAT 
and MAX-CUT, no better algorithm than 
the trivial exhaustive search was known 
until the work of Williams.36

Graph Coloring. In the graph coloring 
problem, we are given as input a graph 
G with n vertices and a palette of k col-
ors. The task is to decide whether it is 
possible to assign to each vertex a color 
from the palette so that the coloring is 
proper, that is, every edge has distinct 
colors at its ends. For example, the 
graph in Figure 1 admits a proper col-
oring of its vertices using three colors.

The graph coloring problem is poly-
nomial-time solvable for k ≤ 2 and 
NP-complete for k ≥ 3.17 The minimum 
number of colors for which a graph G 
has a proper coloring is the chromatic 
number χ(G) of G.

The first algorithmic approaches to 
compute the chromatic number of a 
graph can be traced back to the work of 
Zykov.41 The idea is based on a branch-
ing procedure. The base case of the 
branching occurs when all pairs of ver-
tices of G are adjacent, that is, G is a 
complete graph, in which case the 
chromatic number is equal to the num-
ber of vertices in G. Otherwise, G con-
tains a pair u, v of vertices that are not 
joined by an edge. In every proper col-
oring of G  it holds that u and v either 

have distinct colors (in which case we 
construct a new graph by joining u and 
v with an edge), or have the same color 
(in which case we construct a new 
graph by identifying u and v). This 
enables us to recursively branch on the 
two cases and return the best of the two 
solutions obtained. In terms of run-
ning time, however, this approach is in 
general no better than plain exhaustive 
search, which involves iterating 
through the kn distinct ways to color the 
n vertices of G using the k available col-
ors, and for each coloring testing 
whether it is proper.

After Zykov’s seminal work, the his-
tory of algorithms for graph coloring 
benefits from a digression to the study 
of independent sets in graphs. In par-
ticular, every proper coloring of G has 
the property that no two vertices of the 
same color are joined by an edge. Such 
a set of vertices is an independent set of 
G. An independent set of G is maximal 
if it is not a proper subset of a larger 
independent set of G. In 1976, Lawler27 
observed that dynamic programming 
and advances in the study of indepen-
dent sets can be used to drastically 
improve upon the kn exhaustive search. 
Let us first develop a basic version of 
the algorithm. Since each color class in 
a proper coloring of G is an indepen-
dent set of G, we have that G is 
k-colorable if and only if the vertex set V 
of G decomposes into a union of k inde-
pendent sets of G. Stated in terms of the 
chromatic number, we have χ(G) = 0 if G 
has no vertices; otherwise, we have

χ(G) = 1 + min {χ(G \I) : I ∈ I(G)},� (3)

where I(G) is the family of all nonempty 
independent sets of G, and G\I denotes 
the graph obtained from G by deleting 
the vertices in I. For every subset X ⊆ V, 
we can thus compute the chromatic 
number χ(G[X]) of the subgraph of G 
induced by X as follows. When X  is 
empty, we set χ(G[X]) = 0. When X is 
nonempty, we compute the value 
χ(G[X]) from the already computed 
values of proper subsets of X by making 
use of (3).

What is the running time of this 
algorithm? The algorithm considers all 
subsets X ⊆ V, and for each such X, it 
considers all I ⊆ X that are indepen-
dent in G[X]. The number of such I is at 
most 2|X|. Thus, the number of steps of 

Figure 1. Graph coloring.
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the algorithm is, up to a factor polyno-
mial in n, at most .

Lawler also observed that the 
basic  3n-algorithm can be improved. 
Namely, instead of going through all 
subsets I  ⊆  X that are independent in 
G[X], it suffices to consider only maxi-
mal independent sets of G[X]. It was 
known29 already in the 1960s that the 
number of maximal independent sets 
in a graph with i vertices is at most 3i/3, 
and that these sets can be listed in time 
O  (3i/3n). Thus, the exponential part of 
the running time of the algorithm is 
bounded by

It is possible to make even further 
improvements of this idea by more 
accurate counting of large and small 
maximal independent sets.11 But in all 
these improvements the following 
common pattern seemed unavoidable: 
we have to go through all vertex subsets 
of the graph, and for each subset, we 
have to enumerate an exponential 
number of subsets, resulting in time 
Cn, for a constant C > 2.

Hamiltonian Path. In the NP-complete 
Hamiltonian cycle problem, we are 
given a graph on n vertices and the task 
is to decide whether the graph has a 
Hamiltonian cycle, which is a cycle vis-
iting every vertex of the graph exactly 
once. For example, the graph in 
Figure 2 has a Hamiltonian cycle, out-
lined in bold edges.

This is a special case of the famous 
Traveling Salesman Problem, where 
the task is to, given an n × n matrix of 
travel costs between n cities, design a 
travel schedule that visits each city 
exactly once and returns back to the 
starting point so that the total cost is 
minimized.

A stronger variant, the Hamiltonian 
path problem, constrains one of the 
vertices as the first vertex s and another 
vertex t as the last vertex, and asks us to 
decide whether the graph has a path 
that starts at s, ends at t, and visits all 
the vertices exactly once. (By trying all 
the pairs {s, t} joined by an edge, we 
can solve the Hamiltonian cycle prob-
lem if we can solve the Hamiltonian 
path problem.)

For the Hamiltonian path problem, 
exhaustive search iterates through the 
(n − 2)! ways to arrange the n vertices 
into a sequence that starts at s and 
ends at t, testing for each sequence 
whether it forms a path (of the mini-
mum cost).

Bellman3 and Held and Karp19 
used dynamic programming to solve 
the problem in time O  (2nn2), by keep-
ing track for every vertex v and vertex 
subset S, the existence (or the mini-
mum cost) of a path from s to v that 
visits exactly the vertices in S  ⊆  V. 
This algorithm, however, requires 
also space 2n.

It is possible to solve the problem 
within the same running time but 
within polynomial space by making use 
of the principle of inclusion and exclu-
sion. It seems that essentially the same 
approach was rediscovered several 
times.1,23,25 To illustrate the design, 
Figure 3 displays a graph with n  = 8 
vertices {a, b, c, d, e, f, g, h}.

Let us assume that s = a and t = h. 
A walk of length n − 1 that starts from s 
and ends at t can be viewed as a string 
of length 2n − 1 with alternating and 
possibly repeating vertices and edges, 
such as

	 aAeCbDf  FcGgIdJh� (4)

or

	 aBf DbEgGcFf FcHh.� (5)

We observe that each such walk 
makes exactly n visits to vertices and 
contains, possibly with repetitions, n 
− 1 edges. Moreover, the walk is a 
Hamiltonian path if and only if the 
walk visits n distinct vertices; indeed, 
otherwise there is at least one vertex 
that is visited more than once. For 
example, (4) is a path and (5) is a non-
path because it repeatedly visits f 
(and c).

Although finding a Hamiltonian 
path is a challenging computational 
problem, one can compute in polyno-
mial time the number of walks of 
length k from s to t. Indeed, let A be the 
adjacency matrix of G with rows and 
columns indexed by vertices of G, such 
that the (x, y)-entry of A is set to 1 if 
there is an edge from x to y in G, and 
set to 0 otherwise. By induction on k we 
observe that the (s, t)-entry of the kth 
matrix power Ak counts the number of 
walks of length k in G that start at s 
and end at t. Therefore, the number 
of walks of length n − 1 can be read 
from the matrix An−1, which can be 
computed in time polynomial in n.

One approach to isolate the paths 
among the walks is to employ the 
principle of inclusion and exclusion. 
Consider a finite set X and three sub-
sets A1, A2, and A3 (see Figure 4).

To obtain |A1 ∪ A2 ∪ A3|, we can use 
the following formula

Figure 2. Hamiltonian cycle.

Figure 3. Example for Hamiltonian path.
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length 3 that starts and ends at a vertex 
x must pass through three distinct ver-
tices, and thus form a triangle, 
enabling us to extract the number of 
triangles in D from the diagonal 
entries of the matrix  A3. Thus, it suf-
fices to compute the matrix A3. The 
immediate algorithm for computing 
the product of two v × v matrices 
requires O (v3) steps. However, this 
product can be computed in time 
O (vω), where ω < 2.376 is the so-called 
square matrix multiplication expo-
nent; see Coppersmith and Winograd7 
and Strassen.32 Very recently, it has 
been shown that ω < 2.3727.33

The key insight is now to exploit the 
fact that triangles can be found quickly 
to arrive at a nontrivial algorithm for 
MAX-2-SAT. Toward this end, suppose 
we are given as input a 2-CNF formula 
F over n variables. We may assume that 
n is divisible by 3 by inserting dummy 
variables as necessary. Let X be the set 
of variables of F and let X0, X1, X2 be an 
arbitrary partition of X into sets of 
size n/3.

Let us transform the instance F 
into a directed graph D as follows. For 
every i =  0, 1, 2 and every subset Ti ⊆ 
Xi , the graph D has a vertex Ti . The 
meaning of Ti is that it corresponds to 
an assignment that sets all variables 
in Ti to the value 1 and all variables in 
Xi\Ti to the value 0. Let us write Vi for 
the set of all subsets Ti ⊆ Xi. The arcs 
of D are all possible pairs of the form 
(Ti, Tj), where Ti ⊆ Xi , Tj ⊆ Xj , and j ≡ i 
+ 1 (mod 3). We observe that D has v = 
3 × 2n/3 vertices and 3 × 22n/3 arcs. For i = 
0, 1, 2, let the set Ci consist of all 
clauses of F that either (a) contain vari-
ables only from Xi ; or (b) contain one 
variable from Xi and one variable from 
Xj , with j ≡ i + 1 (mod 3). Now observe 
that every clause of F has at most two 
variables. In particular, either both 
these variables belong to some set Xi , 
or one variable is in Xi and the other is in 
Xj with j ≡ i + 1 (mod 3). Thus, the sets 
C0, C1, C2 partition the clauses in F. We 
still require weights on the arcs of D. 
Let us set the weight w(Ti , Tj) of the 
arc from Ti ⊆ Xi to Tj ⊆ Xj to be equal to 
the number of clauses in Ci satisfied by 
assigning the value 1 to all variables in 
Ti ∪ Tj and the value 0 to all remaining 
variables in (Xi ∪ Xj) \ (Ti ∪ Tj).

To illustrate the construction, let us 
assume F is the following formula

or, equivalently,

The principle of inclusion and exclu-
sion generalizes the last formula to the 
case when there are q subsets 
A1, A2, …, Aq of X by

	 �
(6)

Let us come back to the Hamiltonian 
path problem. Take q = n − 2 and sup-
pose that the vertices other than s and t 
are labeled with integers 1, 2, …, n − 2. 
Let X be the set of all walks of length 
n  −  1 from s to t and, for each i = 1, 2, 
…,  n  −  2, let Ai be the set of walks in X 
that avoid the vertex i. Then,  
is the set of Hamiltonian paths, and we 
can use (6) to count their number. In 
particular, for each fixed  J ⊆ {1, 2, …, q}, 
the right-hand side of (6) can be com-
puted time polynomial in n by counting 
the number of walks of length n − 1 
from s to t in the graph with the vertices 
in J deleted.

This approach can be used to 

compute the number of Hamiltonian 
paths in an n-vertex graph in time 
O  (2nn). It is also possible to obtain sim-
ilar running time by making use of 
dynamic programming. But in both 
approaches, it seemed that the most 
time consuming part of the procedure, 
going through all possible vertex sub-
sets, was unavoidable. This situation 
was particularly frustrating because the 
2n barrier had withstood attacks since 
the early 1960s.

Surprise 1: MAX-2-SAT
Let us recall that for MAX-2-SAT the 
challenge was to break the 2n barrier in 
running time. The following approach 
for doing this is due to Williams.36 An 
alternative approach via sum-product 
algorithms is due to Koivisto.26

Let us start with a seemingly unre-
lated task, namely that of deciding 
whether a given directed graph D con-
tains a triangle, that is, a triple x, y, z of 
vertices such that the arcs xy, yz, and zx 
occur in D. While the immediate com-
binatorial approach to find a triangle 
in a v-vertex graph is to try all possible 
triples of vertices, which would require 
O (v3) steps, there is a faster algorithm 
of Itai and Rodeh.22 The algorithm 
relies on formulating the problem in 
terms of linear algebra. Let A be the 
adjacency matrix of D, and recall that 
the (s, t)-entry of the kth power Ak 
counts the number of walks of length k 
from s to t. In particular, every walk of 

Figure 5. The directed graph D with one triangle T0T1T2 highlighted. 

V0

V1

V2

T0

T1

T2



march 2013  |   vol.  56  |   no.  3  |   communications of the acm     85

review articles

and partition the variables so that X0 = 
{x1, x2}, X1 = {x3, x4}, and X2 = {x5, x6}. 
Then, C0 = {(x1 ∨ x2), (¬x2 ∨ x3), (x1 ∨ 
x3), (¬x2 ∨ x4)}, C1 = {(x3 ∨ x4), (¬x4 ∨ 
¬x6)}, and C2 = {(x1 ∨ ¬ x5)}. Figure 5 
illustrates the underlying graph D, 
where each set V0, V1, V2 has size 4. 
For example, V0 = {Ø, {x1}, {x2}, {x1, 
x2}}. For sets T0 = Ø, T1 = {x3, x4}, and 
T2 = {x6}, the corresponding assign-
ment, viz. x1 = x2 = 0, x3 = 1, x4 = 1, x5 = 
0, x6 = 1, satisfies five clauses. 
Accordingly, the weight of the triangle 
T0T1T2 in D is also five.

The equivalence of the following 
statements follows from the construc-
tion of D: (i) There is a subset of vari-
ables T ⊆ X such that exactly t clauses 
are satisfied by assigning the value 1 to 
variables in T and the value 0 to the 
variables in X \T. (ii) The graph D con-
tains a triangle T0T1T2 with Ti ⊆ Xi for 
each i = 0, 1, 2 such that

t = w(T0, T1) + w(T1, T2) + w(T2, T0).

Thus, to find an assignment that satis-
fies most clauses, it suffices to find a 
heaviest triangle in D.

We are almost done. Indeed, every 
formula with n variables has at most 
4n2 clauses of length 2, and hence to 
find a heaviest triangle, it suffices to 
test for the existence of a triangle of 
weight t for each 0 ≤ t ≤ 4n2 in turn. 
To test for a triangle of weight t, we 
go through all possible O (t3) parti-
tions t = t0 + t1 + t2 into nonnegative 
parts, and for each partition, we con-
struct a subgraph Dt0, t1, t2 of D by leav-
ing only arcs of weight ti for arcs 
going from subsets of Xi to subsets of 
Xj with j ≡ i + 1 (mod 3). Finally, it suf-
fices to decide whether Dt0, t1, t2

 has a 
triangle. The subgraph Dt0, t1, t2 can be 
constructed in time O (22n/3n) by going 
through all arcs of D. The total run-
ning time is thus

Because ω < 2.376, we conclude that 
the running time of the algorithm is 
O (1.74n).

Surprise 2: Graph Coloring
The next surprise is due to Björklund 
et  al.6 To explain the idea of the algo-
rithm, it will again be convenient to 
start with a task that may appear at first 
completely unrelated, namely the mul-
tiplication of polynomials. To multiply 
two given polynomials, the elementary 
algorithm is to cross-multiply the 
monomials pairwise and then collect 
to obtain the result:

(1 + 3x + x2) (2 – x + x2) 
  = 2 – x + x2 + 6x – 3x2 + 3x3 + 2x2  
     – x3 + x4 
  = 2 + 5x + 2x3 + x4.

In particular, if we are multiplying two 
polynomials of degree d (that is, the 
highest degree of a monomial with a 
nonzero coefficient is d), we require 
O (d2) steps to get the result via the ele-
mentary algorithm due to the cross-
multiplication of monomials. 
Fortunately, we can drastically improve 
upon the elementary algorithm by 
deploying the fast Fourier transform 
(FFT) to evaluate both input polynomi-
als (given as two lists of d + 1 coeffi-
cients, one coefficient for each 
monomial) at 2d + 1 distinct points,  
x0, x1, …, x2d, then multiplying the evalu-
ations pointwise, and finally employ-
ing the inverse FFT to recover the list of 
coefficients for the product polyno-
mial. With such an algorithm, the 
number of operations is reduced from 
O (d2) to O (d log d).

But what about graph coloring? 
Could we formulate the task of decom-
posing the vertex set into a union of 
independent sets of G as a task analo-
gous to polynomial multiplication? Let 
us try to find the solution incremen-
tally for j = 1, 2, …, k. Suppose we have a 
list of all the sets of vertices that decom-
pose into a union of j independent sets 
of G, and would like to determine such 
a list for j + 1.

Let us consider an example. Figure 6 

displays a graph with n = 4 whose inde-
pendent sets are

∅, {a}, {b}, {c}, {d}, {a, d}, {c, d}.

For j = 2, the sets of vertices that 
decompose into a union of j indepen-
dent sets are

∅, {a}, {b}, {c}, {d}, {a, b}, {a, c},
{a, d}, {b, c}, {b, d}, {c, d}, 
{a, b, d}, {a, c, d}, {b, c, d}.

Given the family of independent sets 
and  the family of solutions for j, we 
would like to determine the family of 
solution for j + 1. Pursuing an analogy 
with polynomial multiplication, we 
can view the sets in both set families as 
“monomials” and multiply these 
“monomials” using set union. For 
example:

(∅ + {a} + {a, b}) ∪ (∅ + {b, c} + {c}) 
  = ∅ + {b, c} + {c} 
    + {a} + {a, b, c} + {a, c} 
    + {a, b} + {a, b, c} + {a, b, c} 
  = ∅ + {a} + {a, b} + {a, c}  
    + 3{a, b, c} + {b, c} + {c}.

In general, both set families being mul-
tiplied may have up to 2n members, and 
the same holds for the product. Again 
the elementary algorithm will consider 
the monomials pairwise, which 
requires consideration of 2n × 2n  = 4n 
pairs in the worst case. But analogous 
to polynomial multiplication, it turns 
out that we can do considerably better.

Suppose the input set families are 
f and g. We can view f  (and similarly g) as a 
function that takes an integer value f (S) 
for each subset S ⊆ V of our n-element 
vertex set V. (Indeed, let us assume that 
we have f (S) = 1 if and only if the set S is 
in the family, and f (S)  =  0 otherwise.) 
The product, e = f ∪ g, is then a similar 
function defined for each S ⊆ V by 
the rule

Since each pair (A, B) contributes by f (A) 
g (B) to the value of e at exactly S = A ∪ B, 
we observe that O (4n) multiplications 
and additions suffice to compute the 
function e from the given functions f 
and g, which corresponds to the 
elementary multiplication algorithm. 
Now, the analogy to the FFT algorithm 

Figure 6. Example for graph coloring.

a b

c d
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for multiplying polynomials suggests a 
different approach, namely to trans-
form the inputs f and g somehow, then 
multiply pointwise, and finally trans-
form back to the original representa-
tion to recover f ∪ g. The relevant 
transform turns out to be the zeta 
transform fz of f, defined for all Y ⊆ V by

fz(Y) = ΣX ⊆ Y
 f(X),

and its inverse, the Möbius transform fm 
of  f, defined for all Y ⊆ V by

Indeed, the product f ∪ g can be 
computed using the expression

f ∪ g = ( ( fz ) × ( gz ) )m.

Both the zeta transform f  fz and 
the Möbius transform f  fm admit 
fast algorithms analogous to the FFT. 
Indeed, it follows from the work of 
Yates40 (see Knuth24) that given f as 
input, we can compute f z (and simi-
larly fm) using O (2nn) additions and 
subtractions. This algorithm is per-
haps best illustrated in arithmetic cir-
cuit form, which Figure 7 illustrates in 
the case n = 3. Observe that each of the 
n dashed cubes takes the sum along 
one of the n “dimensions” so that each 
output f z(Y) ends up taking the sum of 
all the inputs f (X) with X ⊆ Y.

We can thus compute e = f ∪ g from 
f and g given as input using O (2nn) 
additions, negations, and 
multiplications.

It now follows that we can decide in 
O (2nnk) steps whether a given n-vertex 
graph G is k-colorable. Indeed, we first 
compute the characteristic function f 
of the independent sets of G, that is, 
for each S ⊆ V we set f (S) = 1 if S is inde-
pendent in G, and f (S) = 0 otherwise. 

Next, we compute the functions ej for 
j  = 1, 2, …, k by starting with e1 = f and 
taking the product ej = f ∪ ej − 1 for j ≥ 2. 
We have that G is k-colorable if and 
only if ek(V) > 0.

Surprise 3: Hamiltonian Path
Here we illustrate the third surprise, 
namely a randomized algorithm for 
the Hamiltonian path problem that 
runs in time O (1.66n). This algorithm 
is due to Björklund.4 For ease of expo-
sition, we restrict our consideration to 
bipartite graphs and obtain running 
time O (1.42n). (The algorithm design 
here is also slightly different from 
Björklund’s original design; here we 
rely on reversal of a closed subwalk for 
cancellation of non-paths5 and, 
inspired by Cygan et  al.,8 use the 
Isolation Lemma in place of polyno-
mial identity testing.)

Let us return to the example in 
Figure 3. We observe that the graph is 
bipartite with n = 8, V1 = {a, b, c, d}, and 
V2 = {e, f, g, h}. As before, our task is to 
decide whether there exists a 
Hamiltonian path from vertex s to ver-
tex t. Let us assume that s = a and t = h.

Every walk of length n − 1 makes 
exactly n visits to vertices, where exactly 
n/2 visits are to vertices in V1 because 
the graph is bipartite. Let us now label 
each of the n/2 visits to V1 using an inte-
ger from L = {1, 2, …, n/2}. In particular, 
each walk has (n/2)n/2 possible label-
ings, exactly (n/2)! of which are bijec-
tive, that is, each label is used exactly 
once. For example, let us consider the 
labeled walk

	 � (7)

We observe that (7) is a bijectively 
labeled non-path.

Let us now partition the set of all 
labeled walks into two disjoint classes, 

the “good” class and the “bad” class. A 
labeled walk is good if the labeling is 
bijective and the walk is a path. 
Otherwise a labeled walk is bad. We 
observe that the good class is non-
empty if and only if the graph has a 
Hamiltonian path from s to t.

We now develop a randomized algo-
rithm that decides whether the good 
class is nonempty. The key idea is to 
build a sieve for filtering labeled walks 
so that (a) the bad class is always fil-
tered out and (b) a “witness” from the 
good class remains with fair probabil-
ity whenever the good class is non-
empty. Conceptually, it will be 
convenient to regard the sieve as a 
“bag” (multiset) to which we “hash” 
labeled walks so that upon termina-
tion each “bad” hash value will occur 
in the bag an even number of times, 
and each “good” hash value will occur 
exactly once.

Define the hash of a labeled walk to 
be the multiset that consists of all the 
elements visited by a walk, together 
with their labels (if any). For example, 
the hash value of (7) is

� (8)

In general, we cannot reconstruct a 
labeled walk from its hash value. 
However, every bijectively labeled 
path—that is, every good labeled 
walk—can be reconstructed from its 
hash value. Indeed, the vertices in a 
path are distinct, and the set of edges 
of a path determines the ordering of 
the vertices, which we know must start 
with s and end with t. Thus, each good 
labeled walk has a unique hash value.

Our next objective is to make sure 
that each hash value arising from a 
bad labeled walk gets inserted an even 
number of times into the sieve. 
Toward this end, there are two disjoint 
types of bad labeled walks, namely (a) 
bijectively labeled non-paths and (b) 
non-bijectively labeled walks.

Let us consider a bijectively labeled 
non-path W. We show that W can be 
paired with a bijectively labeled non-
path W ′ with the same hash value. If we 
view W as a string, there is a minimal 
string prefix that contains a repeated 
vertex. Let us call the last vertex v in 
such a prefix the first repeated vertex in 
W. Let v be the first repeated vertex in 
W, and call the subwalk between the 

Figure 7. Fast zeta transform for n = 3.
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first two occurrences of v in W the first 
closed subwalk in W. For example, in (7) 
the first closed subwalk is  
There are two cases to consider in 
setting up the pairing, depending on 
whether the first repeated vertex in W is 
in V1 or in V2.

If the first repeated vertex is in V1, 
let us define W ′ by transposing the 
labels of the first and last vertex in the 
first closed subwalk (that is, the first 
two occurrences of the first repeated 
vertex in W). For example, in the case 
of (7) we obtain

	 �
(9)

Clearly, W and W ′ have the same hash 
value. Furthermore, because W  is bijec-
tively labeled, W ′ ≠ W. Since W ″ = W, we 
have a bijective pairing of bijectively 
labeled non-walks where the first 
repeated vertex is in V1.

If the first repeated vertex is in V2, let 
us reverse the first closed subwalk (also 
reversing the labels) in W to obtain the 
bijectively labeled non-path W ′. For 
example,

	 � (10)

gets paired with

	 � (11)

It is immediate that W and W ′ have the 
same hash value. We also observe that 
W″ = W since two reversals restore the 
original bijectively labeled non-path. It 
remains to conclude that W ≠ W ′. Here 
it is not immediate that reversing the 
first closed subwalk will result in a dif-
ferent labeled walk. Indeed, the first 
closed subwalk may be a palindrome, 
such as  in

	 � (12)

Fortunately, because of bijective label-
ing, the only possible pitfall is a palin-
drome of length 5 that starts at V2, 
visits a vertex in V1, and returns to the 
same vertex in V2. We can avoid such 
palindromes by keeping track of the 
last vertices visited by a partial walk, 
and hence assume that our labeled 
walks do not contain such palin-
dromes, and consequently W ′ ≠  W. 
Thus, the set of bijectively labeled 
non-paths partitions into disjoint 

pairs {W, W ′}, where each pair has the 
same hash value.

Next, let us consider a non-bijectively 
labeled walk W. Each such W avoids 
at  least one label from the set of all 
labels L. In particular, if W avoids 
exactly a labels, there are exactly 2a sets 
A ⊆ L such that W avoids every label in A 
(and possibly some other labels out-
side A).

From the previous observations we 
now obtain the following high-level 
algorithm. For each subset A ⊆ L in 
turn, we insert into the sieve the hash 
value of each labeled walk that avoids 
every label in A. After all subsets A have 
been considered, a hash value occurs 
with odd multiplicity in the sieve if 
and only if it originates from a good 
labeled walk.

A second key idea is now to imple-
ment the sieve at low level using what 
is essentially a layer of hashing so that 
the hash values—such as (8)—are not 
considered explicitly, but rather by 
weight only. That is, instead of siev-
ing hash values explicitly, we sieve 
only their weights. In particular, at 
the start of the algorithm, let us asso-
ciate an integer weight in the interval 
1,  2, …, n(n+1) independently and 
uniformly at random to each of the  
(n+1)n/2 elements that may occur in 
a hash value. The weight of a hash 
value is the sum of the weights of its 
elements. When running the sieve, 
instead of tracking the (partial) walks 
and their (partial) hash values by 
dynamic programming, we only track 
the number of hash values of each 
weight. This enables us to process each 
fixed A ⊆ L in time polynomial in n. The 
number of all sets A ⊆ L is 2|L| ≤ 2n/2 < 
1.42n. Thus, the total running time of 
the above procedure is O (1.42n). 
When the sieve terminates, we assert 
that the input graph has a 
Hamiltonian path if the counter for 
the number of hash values of at least 
one weight is odd; otherwise we 
assert that the graph has no 
Hamiltonian path.

To see that the presence of an odd 
counter implies the existence of a 
Hamiltonian path, observe that by 
our careful design, each bad hash 
value gets inserted into the sieve an 
even number of times, and in partic-
ular contributes an even increment 
to the counter corresponding to the 

weight of the hash value. Thus, an 
odd counter can arise only if a good 
hash value was inserted into the 
sieve, that is, the graph has a 
Hamiltonian path.

Next, let us study the probability of 
a false negative, that is, all counters are 
even although the graph has a 
Hamiltonian path. Here it suffices to 
invoke the “Isolation Lemma” of 
Mulmuley et al.30 which states that for 
any set family over a base set of m ele-
ments, if we assign a weight indepen-
dently and uniformly at random from 
1, 2, …, r to each element of the base 
set, there will be a unique set of the 
minimum weight in the family with 
probability at least 1 − m/r. In particu-
lar, if we consider the set family of 
good hash values—indeed, each good 
hash value is a set—there is a unique 
such hash value of the minimum 
weight—and hence an odd counter in 
the sieve—with probability at least 1/2.

We thus have a randomized algo-
rithm for detecting Hamiltonian paths 
in bipartite graphs that runs in time 
O (1.42n), gives no false positives, and 
gives a false negative with probability 
at most 1/2. (The algorithm could now 
be extended to graphs that are not 
bipartite with running time O (1.66n) by 
partitioning the vertices randomly into 
V1 and V2 and employing a bijective 
labeling also for the edges with both 
ends in V2.)

Conclusion
This article has highlighted three 
recent results in exact exponential 
algorithms, with the aim of illustrating 
the range of techniques that can be 
employed and the element of surprise 
in each case. In this regard, it is per-
haps safe to say that the area is still in a 
state of flux, and with more research 
one can expect more positive sur-
prises. Certainly, the authors do not 
mind to be labeled as optimists in this 
sense. We also hope the three high-
lighted results have illustrated per-
haps the main reason why one wants 
to study algorithms that run in expo-
nential time. That is, the study of expo-
nential time algorithms is really a 
quest for understanding computa-
tion and the structure of computa-
tional problems, including pursuing 
the sometimes surprising connections 
uncovered in such a quest.
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algorithms. Dantsin and Hirsch9 sur-
vey algorithms for SAT, while Malik 
and Zhang28 discuss the deployment 
of SAT solvers in practical applica-
tions. Husfeldt21 gives an introduc-
tion to applications of the principle of 
inclusion and exclusion in algorith-
mics. Flum and Grohe13 give an intro-
duction to parameterized complexity 
theory and its connections to subex-
ponential and exponential time com-
plexity. Williams37 relates improve
ments to exhaustive search with 
superpolynomial lower bounds in cir-
cuit complexity.
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We conclude with three challenge 
problems, each of which at first sight 
appears quite similar to one of the 
three surprises we have covered in this 
article. Frustratingly enough, however, 
there has been no progress at all on 
these problems.

MAX-3-SAT. We have seen that MAX-2-
SAT can be solved in time O (2ωn/3) essen-
tially because of the existence of 
nontrivial algorithms for matrix multi-
plication. But no such tools are avail-
able when one considers instances with 
clauses of length 3 instead of length 2. 
The challenge is to find an algorithm 
that runs in time O ( (2 − ε)n) for MAX-3-
SAT, where n is the number of variables 
and ε > 0 is a constant independent of n.

Edge Coloring. The edge-coloring prob-
lem asks us to color the edges of a 
graph using the minimum number of 
colors such that the coloring is proper, 
that is, any two edges that share an 
endvertex must receive different col-
ors. It is known that the number of 
colors required is either ∆ or ∆ + 1, 
where ∆ is the maximum degree of a 
vertex, and it is NP-complete to decide 
which of the two cases occurs.20 For a 
graph G, the edge-coloring of G is 
equivalent to deciding whether the 
chromatic number of the line graph 
L(G) of G is ∆ or ∆ + 1, which implies 
that edge-coloring can be solved in 
time 2mmO (1), where m is the number of 
edges in G. The challenge is to find an 
algorithm that runs in time O ( (2 − ε)m) 
where ε > 0 is independent of m.

Traveling Salesman. While the 
Hamiltonian cycle problem can be 
solved in randomized time O (1.66n), 
no such algorithm is known for the 
Traveling Salesman Problem with n 
cities and travel costs between cities 
that are nonnegative integers whose 
binary representation is bounded in 
length by a polynomial in n. The chal-
lenge is to find an algorithm that runs 
in time O ( (2 − ε)n) where ε > 0 is inde-
pendent of n.

Further Reading
Beyond the highlighted results in this 
article, the recent book of Fomin and 
Kratsch15 and the surveys of 
Woeginger38, 39 provide a more in-depth 
introduction to exact exponential 




