
80 communications of the acm | march 2013 | vol. 56 | no. 3

review articles

Exact
Exponential
Algorithms

of non-parameterized instances of in-
tractable problems? At first glance, the
general case of an NP-complete prob-
lem is a formidable opponent: when
faced with a problem whose instances

Many computational problems have been shown to be
intractable, either in the strong sense that no
algorithm exists at all—the canonical example being
the undecidability of the Halting Problem—or that no
efficient algorithm exists. From a theoretical
perspective perhaps the most intriguing case occurs
with the family of NP-complete problems, for which it
is not known whether the problems are intractable.
That is, despite extensive research, neither is an
efficient algorithm known, nor has the existence of
one been rigorously ruled out.16

To cope with intractability, advanced techniques
such as parameterized algorithms10,13,31 (that isolate the
exponential complexity to a specific structural
parameter of a problem instance) and approximation
algorithms34 (that produce a solution whose value
is guaranteed to be within a known factor of the
value of an optimum solution) have been developed.
But what can we say about finding exact solutions

 key insights

 � �While it remains open whether or not
P equals NP, significant progress in
the area of exhaustive search has been
made in the last few years. In particular,
many NP-complete problems can
now be solved significantly faster by
exhaustive search. The area of exact
exponential algorithms studies the
design of such techniques.

 � �While many exact exponential
algorithms date back to the early days
of computing, a number of beautiful
surprises have emerged recently.

doi:10.1145/2428556.2428575

Discovering surprises in
the face of intractability.

by Fedor V. Fomin and Petteri Kaski

march 2013 | vol. 56 | no. 3 | communications of the acm 81

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 M
i

k
a

e
l

 H
v

i
d

t
f

e
l

d
t

 C
h

r
i

s
t

e
n

s
e

n

can express arbitrary nondeterministic
computation, how is one to proceed at
solving a given instance, apart from the
obvious exhaustive search that “tries out
all the possibilities”?

Fortunately, the study of algorithms
knows many positive surprises. Com-
putation is malleable in nontrivial
ways, and subtle algorithmically ex-
ploitable structure has been discov-
ered where none was thought to ex-
ist. Furthermore, the more generous
a time budget the algorithm design-
er has, the more techniques be-
come available. Especially so if the
budget is exponential in the size of
the input. Thus, absent complexity-
theoretic obstacles, one should be
able to do better than exhaustive

search. This is the objective of exact
exponential algorithms.15

Arguably, the oldest design techni
que to improve upon exhaustive search
is branching or backtrack search,18,35
which recursively splits the exhaustive
search space, attempting to infer in the
process that parts of the space need
not be visited. For recent applications
of branching techniques, we refer to
Eppstein12 and Fomin et al.14 Another
classical design technique is dynamic
programming,2 which derives a solution
from the bottom up by storing solu-
tions of smaller subproblems and
combining them via a recurrence rela-
tion to progressively yield solutions of
larger subproblems. These two tech-
niques in many cases give significant

improvements over plain exhaustive
search, but in other cases, no improve-
ment at all upon exhaustive search has
been available, and many problems
remain with this status.

In what follows, we do not try to give
a comprehensive survey of exact expo-
nential algorithms. Indeed, even list-
ing the most significant results would
require a format different from this
review. Instead, we have chosen to
review the area by highlighting three
recent results. In each case, research
had been essentially stuck for an
extended period of time—in one case
for almost 50 years!—and it was con-
ceivable that perhaps no improvement
could be obtained over the known algo-
rithms. But computation has the power

82 communications of the acm | march 2013 | vol. 56 | no. 3

review articles

to surprise, and in this article we hope
to convey some of the excitement sur-
rounding each result. We also find
these results particularly appealing
because they are a posteriori quite
accessible compared with many of the
deep results in theoretical computer
science, and yet they illustrate the sub-
tle ways in which computation can be
orchestrated to solve a problem.

Three NP-Complete Problems
The three problems we discuss in more
detail are Maximum 2-Satisfiability,
Graph Coloring, and Hamiltonian Path.
We start by giving an overview of previ-
ous approaches to attack each prob-
lem, and then in the subsequent
sections discuss the novel algorithms.

MAX-2-SAT. The satisfiability problem
takes as input a logical expression built
from n variables x1, x2, …, xn and the
Boolean connectives ¬ (NOT), ∨ (OR),
and ∧ (AND). The task is to decide
whether the expression can be satisfied
by assigning a truth value, either
0 (false) or 1 (true), to each variable
such that the expression evaluates to 1.
For example, the expression

� (1)

can be satisfied by setting x1 = 1 and
x2 = 0, whereas the expression

(2)

is not satisfiable.
It is customary to assume that the

input expression is in conjunctive nor-
mal form, where it is required that the
expression is the AND of clauses, each
of which is an OR of literals, which are
variables or negations of variables. If all
clauses have k literals, then the expres-
sion is in k-conjunctive normal form, or
k-CNF. For example, (1) is in 2-CNF and
(2) is in 3-CNF. The satisfiability

problem for an expression in k-CNF is
called the k-CNF satisfiability or k-SAT
problem. It is polynomial-time solvable
for k ≤ 2 and NP-complete for k ≥ 3.17

A stronger variant of the problem,
maximum k-CNF satisfiability or
MAX-k-SAT, gives a threshold t as addi-
tional input, and the task is to decide
whether there is an assignment of
truth values to the variables such that
at least t clauses evaluate to 1. This vari-
ant is NP-complete for all k ≥ 2.17

MAX-k-SAT is trivially solvable by try-
ing all possible truth assignments.
When a formula has n variables, it has 2n
possible assignments and for each
assignment we can compute in polyno-
mial time how many clauses are satis-
fied. Thus, the total running time, up to
a factor polynomial in n, is dominated
by 2n. A special case of the problem,
known as MAX-CUT, can be obtained by
formulating MAX-2-SAT as a problem of
partitioning the vertices of an n-vertex
graph into two subsets such that at least
t edges cross between subsets. However,
even in the special cases of MAX-2-SAT
and MAX-CUT, no better algorithm than
the trivial exhaustive search was known
until the work of Williams.36

Graph Coloring. In the graph coloring
problem, we are given as input a graph
G with n vertices and a palette of k col-
ors. The task is to decide whether it is
possible to assign to each vertex a color
from the palette so that the coloring is
proper, that is, every edge has distinct
colors at its ends. For example, the
graph in Figure 1 admits a proper col-
oring of its vertices using three colors.

The graph coloring problem is poly-
nomial-time solvable for k ≤ 2 and
NP-complete for k ≥ 3.17 The minimum
number of colors for which a graph G
has a proper coloring is the chromatic
number χ(G) of G.

The first algorithmic approaches to
compute the chromatic number of a
graph can be traced back to the work of
Zykov.41 The idea is based on a branch-
ing procedure. The base case of the
branching occurs when all pairs of ver-
tices of G are adjacent, that is, G is a
complete graph, in which case the
chromatic number is equal to the num-
ber of vertices in G. Otherwise, G con-
tains a pair u, v of vertices that are not
joined by an edge. In every proper col-
oring of G it holds that u and v either

have distinct colors (in which case we
construct a new graph by joining u and
v with an edge), or have the same color
(in which case we construct a new
graph by identifying u and v). This
enables us to recursively branch on the
two cases and return the best of the two
solutions obtained. In terms of run-
ning time, however, this approach is in
general no better than plain exhaustive
search, which involves iterating
through the kn distinct ways to color the
n vertices of G using the k available col-
ors, and for each coloring testing
whether it is proper.

After Zykov’s seminal work, the his-
tory of algorithms for graph coloring
benefits from a digression to the study
of independent sets in graphs. In par-
ticular, every proper coloring of G has
the property that no two vertices of the
same color are joined by an edge. Such
a set of vertices is an independent set of
G. An independent set of G is maximal
if it is not a proper subset of a larger
independent set of G. In 1976, Lawler27
observed that dynamic programming
and advances in the study of indepen-
dent sets can be used to drastically
improve upon the kn exhaustive search.
Let us first develop a basic version of
the algorithm. Since each color class in
a proper coloring of G is an indepen-
dent set of G, we have that G is
k-colorable if and only if the vertex set V
of G decomposes into a union of k inde-
pendent sets of G. Stated in terms of the
chromatic number, we have χ(G) = 0 if G
has no vertices; otherwise, we have

χ(G) = 1 + min {χ(G \I) : I ∈ I(G)},� (3)

where I(G) is the family of all nonempty
independent sets of G, and G\I denotes
the graph obtained from G by deleting
the vertices in I. For every subset X ⊆ V,
we can thus compute the chromatic
number χ(G[X]) of the subgraph of G
induced by X as follows. When X is
empty, we set χ(G[X]) = 0. When X is
nonempty, we compute the value
χ(G[X]) from the already computed
values of proper subsets of X by making
use of (3).

What is the running time of this
algorithm? The algorithm considers all
subsets X ⊆ V, and for each such X, it
considers all I ⊆ X that are indepen-
dent in G[X]. The number of such I is at
most 2|X|. Thus, the number of steps of

Figure 1. Graph coloring.

march 2013 | vol. 56 | no. 3 | communications of the acm 83

review articles

the algorithm is, up to a factor polyno-
mial in n, at most .

Lawler also observed that the
basic 3n-algorithm can be improved.
Namely, instead of going through all
subsets I ⊆ X that are independent in
G[X], it suffices to consider only maxi-
mal independent sets of G[X]. It was
known29 already in the 1960s that the
number of maximal independent sets
in a graph with i vertices is at most 3i/3,
and that these sets can be listed in time
O  (3i/3n). Thus, the exponential part of
the running time of the algorithm is
bounded by

It is possible to make even further
improvements of this idea by more
accurate counting of large and small
maximal independent sets.11 But in all
these improvements the following
common pattern seemed unavoidable:
we have to go through all vertex subsets
of the graph, and for each subset, we
have to enumerate an exponential
number of subsets, resulting in time
Cn, for a constant C > 2.

Hamiltonian Path. In the NP-complete
Hamiltonian cycle problem, we are
given a graph on n vertices and the task
is to decide whether the graph has a
Hamiltonian cycle, which is a cycle vis-
iting every vertex of the graph exactly
once. For example, the graph in
Figure 2 has a Hamiltonian cycle, out-
lined in bold edges.

This is a special case of the famous
Traveling Salesman Problem, where
the task is to, given an n × n matrix of
travel costs between n cities, design a
travel schedule that visits each city
exactly once and returns back to the
starting point so that the total cost is
minimized.

A stronger variant, the Hamiltonian
path problem, constrains one of the
vertices as the first vertex s and another
vertex t as the last vertex, and asks us to
decide whether the graph has a path
that starts at s, ends at t, and visits all
the vertices exactly once. (By trying all
the pairs {s, t} joined by an edge, we
can solve the Hamiltonian cycle prob-
lem if we can solve the Hamiltonian
path problem.)

For the Hamiltonian path problem,
exhaustive search iterates through the
(n − 2)! ways to arrange the n vertices
into a sequence that starts at s and
ends at t, testing for each sequence
whether it forms a path (of the mini-
mum cost).

Bellman3 and Held and Karp19
used dynamic programming to solve
the problem in time O  (2nn2), by keep-
ing track for every vertex v and vertex
subset S, the existence (or the mini-
mum cost) of a path from s to v that
visits exactly the vertices in S ⊆ V.
This algorithm, however, requires
also space 2n.

It is possible to solve the problem
within the same running time but
within polynomial space by making use
of the principle of inclusion and exclu-
sion. It seems that essentially the same
approach was rediscovered several
times.1,23,25 To illustrate the design,
Figure 3 displays a graph with n = 8
vertices {a, b, c, d, e, f, g, h}.

Let us assume that s = a and t = h.
A walk of length n − 1 that starts from s
and ends at t can be viewed as a string
of length 2n − 1 with alternating and
possibly repeating vertices and edges,
such as

	 aAeCbDf  FcGgIdJh� (4)

or

	 aBf DbEgGcFf FcHh.� (5)

We observe that each such walk
makes exactly n visits to vertices and
contains, possibly with repetitions, n
− 1 edges. Moreover, the walk is a
Hamiltonian path if and only if the
walk visits n distinct vertices; indeed,
otherwise there is at least one vertex
that is visited more than once. For
example, (4) is a path and (5) is a non-
path because it repeatedly visits f
(and c).

Although finding a Hamiltonian
path is a challenging computational
problem, one can compute in polyno-
mial time the number of walks of
length k from s to t. Indeed, let A be the
adjacency matrix of G with rows and
columns indexed by vertices of G, such
that the (x, y)-entry of A is set to 1 if
there is an edge from x to y in G, and
set to 0 otherwise. By induction on k we
observe that the (s, t)-entry of the kth
matrix power Ak counts the number of
walks of length k in G that start at s
and end at t. Therefore, the number
of walks of length n − 1 can be read
from the matrix An−1, which can be
computed in time polynomial in n.

One approach to isolate the paths
among the walks is to employ the
principle of inclusion and exclusion.
Consider a finite set X and three sub-
sets A1, A2, and A3 (see Figure 4).

To obtain |A1 ∪ A2 ∪ A3|, we can use
the following formula

Figure 2. Hamiltonian cycle.

Figure 3. Example for Hamiltonian path.

a b

e f

c d

g h

A
B C

D
E F

G
H I

J

Figure 4. A Venn diagram for three subsets.

X

A2 A3

A1

84 communications of the acm | march 2013 | vol. 56 | no. 3

review articles

length 3 that starts and ends at a vertex
x must pass through three distinct ver-
tices, and thus form a triangle,
enabling us to extract the number of
triangles in D from the diagonal
entries of the matrix A3. Thus, it suf-
fices to compute the matrix A3. The
immediate algorithm for computing
the product of two v × v matrices
requires O (v3) steps. However, this
product can be computed in time
O (vω), where ω < 2.376 is the so-called
square matrix multiplication expo-
nent; see Coppersmith and Winograd7
and Strassen.32 Very recently, it has
been shown that ω < 2.3727.33

The key insight is now to exploit the
fact that triangles can be found quickly
to arrive at a nontrivial algorithm for
MAX-2-SAT. Toward this end, suppose
we are given as input a 2-CNF formula
F over n variables. We may assume that
n is divisible by 3 by inserting dummy
variables as necessary. Let X be the set
of variables of F and let X0, X1, X2 be an
arbitrary partition of X into sets of
size n/3.

Let us transform the instance F
into a directed graph D as follows. For
every i = 0, 1, 2 and every subset Ti ⊆
Xi , the graph D has a vertex Ti . The
meaning of Ti is that it corresponds to
an assignment that sets all variables
in Ti to the value 1 and all variables in
Xi\Ti to the value 0. Let us write Vi for
the set of all subsets Ti ⊆ Xi. The arcs
of D are all possible pairs of the form
(Ti, Tj), where Ti ⊆ Xi , Tj ⊆ Xj , and j ≡ i
+ 1 (mod 3). We observe that D has v =
3 × 2n/3 vertices and 3 × 22n/3 arcs. For i =
0, 1, 2, let the set Ci consist of all
clauses of F that either (a) contain vari-
ables only from Xi ; or (b) contain one
variable from Xi and one variable from
Xj , with j ≡ i + 1 (mod 3). Now observe
that every clause of F has at most two
variables. In particular, either both
these variables belong to some set Xi ,
or one variable is in Xi and the other is in
Xj with j ≡ i + 1 (mod 3). Thus, the sets
C0, C1, C2 partition the clauses in F. We
still require weights on the arcs of D.
Let us set the weight w(Ti , Tj) of the
arc from Ti ⊆ Xi to Tj ⊆ Xj to be equal to
the number of clauses in Ci satisfied by
assigning the value 1 to all variables in
Ti ∪ Tj and the value 0 to all remaining
variables in (Xi ∪ Xj) \ (Ti ∪ Tj).

To illustrate the construction, let us
assume F is the following formula

or, equivalently,

The principle of inclusion and exclu-
sion generalizes the last formula to the
case when there are q subsets
A1, A2, …, Aq of X by

	 �
(6)

Let us come back to the Hamiltonian
path problem. Take q = n − 2 and sup-
pose that the vertices other than s and t
are labeled with integers 1, 2, …, n − 2.
Let X be the set of all walks of length
n − 1 from s to t and, for each i = 1, 2,
…, n − 2, let Ai be the set of walks in X
that avoid the vertex i. Then,
is the set of Hamiltonian paths, and we
can use (6) to count their number. In
particular, for each fixed  J ⊆ {1, 2, …, q},
the right-hand side of (6) can be com-
puted time polynomial in n by counting
the number of walks of length n − 1
from s to t in the graph with the vertices
in J deleted.

This approach can be used to

compute the number of Hamiltonian
paths in an n-vertex graph in time
O  (2nn). It is also possible to obtain sim-
ilar running time by making use of
dynamic programming. But in both
approaches, it seemed that the most
time consuming part of the procedure,
going through all possible vertex sub-
sets, was unavoidable. This situation
was particularly frustrating because the
2n barrier had withstood attacks since
the early 1960s.

Surprise 1: MAX-2-SAT
Let us recall that for MAX-2-SAT the
challenge was to break the 2n barrier in
running time. The following approach
for doing this is due to Williams.36 An
alternative approach via sum-product
algorithms is due to Koivisto.26

Let us start with a seemingly unre-
lated task, namely that of deciding
whether a given directed graph D con-
tains a triangle, that is, a triple x, y, z of
vertices such that the arcs xy, yz, and zx
occur in D. While the immediate com-
binatorial approach to find a triangle
in a v-vertex graph is to try all possible
triples of vertices, which would require
O (v3) steps, there is a faster algorithm
of Itai and Rodeh.22 The algorithm
relies on formulating the problem in
terms of linear algebra. Let A be the
adjacency matrix of D, and recall that
the (s, t)-entry of the kth power Ak
counts the number of walks of length k
from s to t. In particular, every walk of

Figure 5. The directed graph D with one triangle T0T1T2 highlighted.

V0

V1

V2

T0

T1

T2

march 2013 | vol. 56 | no. 3 | communications of the acm 85

review articles

and partition the variables so that X0 =
{x1, x2}, X1 = {x3, x4}, and X2 = {x5, x6}.
Then, C0 = {(x1 ∨ x2), (¬x2 ∨ x3), (x1 ∨
x3), (¬x2 ∨ x4)}, C1 = {(x3 ∨ x4), (¬x4 ∨
¬x6)}, and C2 = {(x1 ∨ ¬ x5)}. Figure 5
illustrates the underlying graph D,
where each set V0, V1, V2 has size 4.
For example, V0 = {Ø, {x1}, {x2}, {x1,
x2}}. For sets T0 = Ø, T1 = {x3, x4}, and
T2 = {x6}, the corresponding assign-
ment, viz. x1 = x2 = 0, x3 = 1, x4 = 1, x5 =
0, x6 = 1, satisfies five clauses.
Accordingly, the weight of the triangle
T0T1T2 in D is also five.

The equivalence of the following
statements follows from the construc-
tion of D: (i) There is a subset of vari-
ables T ⊆ X such that exactly t clauses
are satisfied by assigning the value 1 to
variables in T and the value 0 to the
variables in X \T. (ii) The graph D con-
tains a triangle T0T1T2 with Ti ⊆ Xi for
each i = 0, 1, 2 such that

t = w(T0, T1) + w(T1, T2) + w(T2, T0).

Thus, to find an assignment that satis-
fies most clauses, it suffices to find a
heaviest triangle in D.

We are almost done. Indeed, every
formula with n variables has at most
4n2 clauses of length 2, and hence to
find a heaviest triangle, it suffices to
test for the existence of a triangle of
weight t for each 0 ≤ t ≤ 4n2 in turn.
To test for a triangle of weight t, we
go through all possible O (t3) parti-
tions t = t0 + t1 + t2 into nonnegative
parts, and for each partition, we con-
struct a subgraph Dt0, t1, t2 of D by leav-
ing only arcs of weight ti for arcs
going from subsets of Xi to subsets of
Xj with j ≡ i + 1 (mod 3). Finally, it suf-
fices to decide whether Dt0, t1, t2

 has a
triangle. The subgraph Dt0, t1, t2 can be
constructed in time O (22n/3n) by going
through all arcs of D. The total run-
ning time is thus

Because ω < 2.376, we conclude that
the running time of the algorithm is
O (1.74n).

Surprise 2: Graph Coloring
The next surprise is due to Björklund
et al.6 To explain the idea of the algo-
rithm, it will again be convenient to
start with a task that may appear at first
completely unrelated, namely the mul-
tiplication of polynomials. To multiply
two given polynomials, the elementary
algorithm is to cross-multiply the
monomials pairwise and then collect
to obtain the result:

(1 + 3x + x2) (2 – x + x2)
  = 2 – x + x2 + 6x – 3x2 + 3x3 + 2x2
   – x3 + x4
  = 2 + 5x + 2x3 + x4.

In particular, if we are multiplying two
polynomials of degree d (that is, the
highest degree of a monomial with a
nonzero coefficient is d), we require
O (d2) steps to get the result via the ele-
mentary algorithm due to the cross-
multiplication of monomials.
Fortunately, we can drastically improve
upon the elementary algorithm by
deploying the fast Fourier transform
(FFT) to evaluate both input polynomi-
als (given as two lists of d + 1 coeffi-
cients, one coefficient for each
monomial) at 2d + 1 distinct points,
x0, x1, …, x2d, then multiplying the evalu-
ations pointwise, and finally employ-
ing the inverse FFT to recover the list of
coefficients for the product polyno-
mial. With such an algorithm, the
number of operations is reduced from
O (d2) to O (d log d).

But what about graph coloring?
Could we formulate the task of decom-
posing the vertex set into a union of
independent sets of G as a task analo-
gous to polynomial multiplication? Let
us try to find the solution incremen-
tally for j = 1, 2, …, k. Suppose we have a
list of all the sets of vertices that decom-
pose into a union of j independent sets
of G, and would like to determine such
a list for j + 1.

Let us consider an example. Figure 6

displays a graph with n = 4 whose inde-
pendent sets are

∅, {a}, {b}, {c}, {d}, {a, d}, {c, d}.

For j = 2, the sets of vertices that
decompose into a union of j indepen-
dent sets are

∅, {a}, {b}, {c}, {d}, {a, b}, {a, c},
{a, d}, {b, c}, {b, d}, {c, d},
{a, b, d}, {a, c, d}, {b, c, d}.

Given the family of independent sets
and the family of solutions for j, we
would like to determine the family of
solution for j + 1. Pursuing an analogy
with polynomial multiplication, we
can view the sets in both set families as
“monomials” and multiply these
“monomials” using set union. For
example:

(∅ + {a} + {a, b}) ∪ (∅ + {b, c} + {c})
  = ∅ + {b, c} + {c}
   + {a} + {a, b, c} + {a, c}
   + {a, b} + {a, b, c} + {a, b, c}
  = ∅ + {a} + {a, b} + {a, c}
   + 3{a, b, c} + {b, c} + {c}.

In general, both set families being mul-
tiplied may have up to 2n members, and
the same holds for the product. Again
the elementary algorithm will consider
the monomials pairwise, which
requires consideration of 2n × 2n = 4n
pairs in the worst case. But analogous
to polynomial multiplication, it turns
out that we can do considerably better.

Suppose the input set families are
f and g. We can view f  (and similarly g) as a
function that takes an integer value f (S)
for each subset S ⊆ V of our n-element
vertex set V. (Indeed, let us assume that
we have f (S) = 1 if and only if the set S is
in the family, and f (S) = 0 otherwise.)
The product, e = f ∪ g, is then a similar
function defined for each S ⊆ V by
the rule

Since each pair (A, B) contributes by f (A)
g (B) to the value of e at exactly S = A ∪ B,
we observe that O (4n) multiplications
and additions suffice to compute the
function e from the given functions f
and g, which corresponds to the
elementary multiplication algorithm.
Now, the analogy to the FFT algorithm

Figure 6. Example for graph coloring.

a b

c d

86 communications of the acm | march 2013 | vol. 56 | no. 3

review articles

for multiplying polynomials suggests a
different approach, namely to trans-
form the inputs f and g somehow, then
multiply pointwise, and finally trans-
form back to the original representa-
tion to recover f ∪ g. The relevant
transform turns out to be the zeta
transform fz of f, defined for all Y ⊆ V by

fz(Y) = ΣX ⊆ Y
 f(X),

and its inverse, the Möbius transform fm
of  f, defined for all Y ⊆ V by

Indeed, the product f ∪ g can be
computed using the expression

f ∪ g = ( (fz) × (gz) )m.

Both the zeta transform f  fz and
the Möbius transform f  fm admit
fast algorithms analogous to the FFT.
Indeed, it follows from the work of
Yates40 (see Knuth24) that given f as
input, we can compute f z (and simi-
larly fm) using O (2nn) additions and
subtractions. This algorithm is per-
haps best illustrated in arithmetic cir-
cuit form, which Figure 7 illustrates in
the case n = 3. Observe that each of the
n dashed cubes takes the sum along
one of the n “dimensions” so that each
output f z(Y) ends up taking the sum of
all the inputs f (X) with X ⊆ Y.

We can thus compute e = f ∪ g from
f and g given as input using O (2nn)
additions, negations, and
multiplications.

It now follows that we can decide in
O (2nnk) steps whether a given n-vertex
graph G is k-colorable. Indeed, we first
compute the characteristic function f
of the independent sets of G, that is,
for each S ⊆ V we set f (S) = 1 if S is inde-
pendent in G, and f (S) = 0 otherwise.

Next, we compute the functions ej for
j = 1, 2, …, k by starting with e1 = f and
taking the product ej = f ∪ ej − 1 for j ≥ 2.
We have that G is k-colorable if and
only if ek(V) > 0.

Surprise 3: Hamiltonian Path
Here we illustrate the third surprise,
namely a randomized algorithm for
the Hamiltonian path problem that
runs in time O (1.66n). This algorithm
is due to Björklund.4 For ease of expo-
sition, we restrict our consideration to
bipartite graphs and obtain running
time O (1.42n). (The algorithm design
here is also slightly different from
Björklund’s original design; here we
rely on reversal of a closed subwalk for
cancellation of non-paths5 and,
inspired by Cygan et al.,8 use the
Isolation Lemma in place of polyno-
mial identity testing.)

Let us return to the example in
Figure 3. We observe that the graph is
bipartite with n = 8, V1 = {a, b, c, d}, and
V2 = {e, f, g, h}. As before, our task is to
decide whether there exists a
Hamiltonian path from vertex s to ver-
tex t. Let us assume that s = a and t = h.

Every walk of length n − 1 makes
exactly n visits to vertices, where exactly
n/2 visits are to vertices in V1 because
the graph is bipartite. Let us now label
each of the n/2 visits to V1 using an inte-
ger from L = {1, 2, …, n/2}. In particular,
each walk has (n/2)n/2 possible label-
ings, exactly (n/2)! of which are bijec-
tive, that is, each label is used exactly
once. For example, let us consider the
labeled walk

	 � (7)

We observe that (7) is a bijectively
labeled non-path.

Let us now partition the set of all
labeled walks into two disjoint classes,

the “good” class and the “bad” class. A
labeled walk is good if the labeling is
bijective and the walk is a path.
Otherwise a labeled walk is bad. We
observe that the good class is non-
empty if and only if the graph has a
Hamiltonian path from s to t.

We now develop a randomized algo-
rithm that decides whether the good
class is nonempty. The key idea is to
build a sieve for filtering labeled walks
so that (a) the bad class is always fil-
tered out and (b) a “witness” from the
good class remains with fair probabil-
ity whenever the good class is non-
empty. Conceptually, it will be
convenient to regard the sieve as a
“bag” (multiset) to which we “hash”
labeled walks so that upon termina-
tion each “bad” hash value will occur
in the bag an even number of times,
and each “good” hash value will occur
exactly once.

Define the hash of a labeled walk to
be the multiset that consists of all the
elements visited by a walk, together
with their labels (if any). For example,
the hash value of (7) is

� (8)

In general, we cannot reconstruct a
labeled walk from its hash value.
However, every bijectively labeled
path—that is, every good labeled
walk—can be reconstructed from its
hash value. Indeed, the vertices in a
path are distinct, and the set of edges
of a path determines the ordering of
the vertices, which we know must start
with s and end with t. Thus, each good
labeled walk has a unique hash value.

Our next objective is to make sure
that each hash value arising from a
bad labeled walk gets inserted an even
number of times into the sieve.
Toward this end, there are two disjoint
types of bad labeled walks, namely (a)
bijectively labeled non-paths and (b)
non-bijectively labeled walks.

Let us consider a bijectively labeled
non-path W. We show that W can be
paired with a bijectively labeled non-
path W ′ with the same hash value. If we
view W as a string, there is a minimal
string prefix that contains a repeated
vertex. Let us call the last vertex v in
such a prefix the first repeated vertex in
W. Let v be the first repeated vertex in
W, and call the subwalk between the

Figure 7. Fast zeta transform for n = 3.

+
+

+
+

+

+

+

+

+

+

+
+

f()

f({a})
f({b})
f({c})
f({a,b})
f({a,c})
f({b,c})

f({a,b,c}) f ({a,b,c})

f ({b,c})
f ({a,c})
f ({a,b})
f ({c})
f ({b})
f ({a})

f ()

march 2013 | vol. 56 | no. 3 | communications of the acm 87

review articles

first two occurrences of v in W the first
closed subwalk in W. For example, in (7)
the first closed subwalk is
There are two cases to consider in
setting up the pairing, depending on
whether the first repeated vertex in W is
in V1 or in V2.

If the first repeated vertex is in V1,
let us define W ′ by transposing the
labels of the first and last vertex in the
first closed subwalk (that is, the first
two occurrences of the first repeated
vertex in W). For example, in the case
of (7) we obtain

	 �
(9)

Clearly, W and W ′ have the same hash
value. Furthermore, because W is bijec-
tively labeled, W ′ ≠ W. Since W ″ = W, we
have a bijective pairing of bijectively
labeled non-walks where the first
repeated vertex is in V1.

If the first repeated vertex is in V2, let
us reverse the first closed subwalk (also
reversing the labels) in W to obtain the
bijectively labeled non-path W ′. For
example,

	 � (10)

gets paired with

	 � (11)

It is immediate that W and W ′ have the
same hash value. We also observe that
W″ = W since two reversals restore the
original bijectively labeled non-path. It
remains to conclude that W ≠ W ′. Here
it is not immediate that reversing the
first closed subwalk will result in a dif-
ferent labeled walk. Indeed, the first
closed subwalk may be a palindrome,
such as in

	 � (12)

Fortunately, because of bijective label-
ing, the only possible pitfall is a palin-
drome of length 5 that starts at V2,
visits a vertex in V1, and returns to the
same vertex in V2. We can avoid such
palindromes by keeping track of the
last vertices visited by a partial walk,
and hence assume that our labeled
walks do not contain such palin-
dromes, and consequently W ′ ≠ W.
Thus, the set of bijectively labeled
non-paths partitions into disjoint

pairs {W, W ′}, where each pair has the
same hash value.

Next, let us consider a non-bijectively
labeled walk W. Each such W avoids
at least one label from the set of all
labels L. In particular, if W avoids
exactly a labels, there are exactly 2a sets
A ⊆ L such that W avoids every label in A
(and possibly some other labels out-
side A).

From the previous observations we
now obtain the following high-level
algorithm. For each subset A ⊆ L in
turn, we insert into the sieve the hash
value of each labeled walk that avoids
every label in A. After all subsets A have
been considered, a hash value occurs
with odd multiplicity in the sieve if
and only if it originates from a good
labeled walk.

A second key idea is now to imple-
ment the sieve at low level using what
is essentially a layer of hashing so that
the hash values—such as (8)—are not
considered explicitly, but rather by
weight only. That is, instead of siev-
ing hash values explicitly, we sieve
only their weights. In particular, at
the start of the algorithm, let us asso-
ciate an integer weight in the interval
1, 2, …, n(n+1) independently and
uniformly at random to each of the
(n+1)n/2 elements that may occur in
a hash value. The weight of a hash
value is the sum of the weights of its
elements. When running the sieve,
instead of tracking the (partial) walks
and their (partial) hash values by
dynamic programming, we only track
the number of hash values of each
weight. This enables us to process each
fixed A ⊆ L in time polynomial in n. The
number of all sets A ⊆ L is 2|L| ≤ 2n/2 <
1.42n. Thus, the total running time of
the above procedure is O (1.42n).
When the sieve terminates, we assert
that the input graph has a
Hamiltonian path if the counter for
the number of hash values of at least
one weight is odd; otherwise we
assert that the graph has no
Hamiltonian path.

To see that the presence of an odd
counter implies the existence of a
Hamiltonian path, observe that by
our careful design, each bad hash
value gets inserted into the sieve an
even number of times, and in partic-
ular contributes an even increment
to the counter corresponding to the

weight of the hash value. Thus, an
odd counter can arise only if a good
hash value was inserted into the
sieve, that is, the graph has a
Hamiltonian path.

Next, let us study the probability of
a false negative, that is, all counters are
even although the graph has a
Hamiltonian path. Here it suffices to
invoke the “Isolation Lemma” of
Mulmuley et al.30 which states that for
any set family over a base set of m ele-
ments, if we assign a weight indepen-
dently and uniformly at random from
1, 2, …, r to each element of the base
set, there will be a unique set of the
minimum weight in the family with
probability at least 1 − m/r. In particu-
lar, if we consider the set family of
good hash values—indeed, each good
hash value is a set—there is a unique
such hash value of the minimum
weight—and hence an odd counter in
the sieve—with probability at least 1/2.

We thus have a randomized algo-
rithm for detecting Hamiltonian paths
in bipartite graphs that runs in time
O (1.42n), gives no false positives, and
gives a false negative with probability
at most 1/2. (The algorithm could now
be extended to graphs that are not
bipartite with running time O (1.66n) by
partitioning the vertices randomly into
V1 and V2 and employing a bijective
labeling also for the edges with both
ends in V2.)

Conclusion
This article has highlighted three
recent results in exact exponential
algorithms, with the aim of illustrating
the range of techniques that can be
employed and the element of surprise
in each case. In this regard, it is per-
haps safe to say that the area is still in a
state of flux, and with more research
one can expect more positive sur-
prises. Certainly, the authors do not
mind to be labeled as optimists in this
sense. We also hope the three high-
lighted results have illustrated per-
haps the main reason why one wants
to study algorithms that run in expo-
nential time. That is, the study of expo-
nential time algorithms is really a
quest for understanding computa-
tion and the structure of computa-
tional problems, including pursuing
the sometimes surprising connections
uncovered in such a quest.

88 communications of the acm | march 2013 | vol. 56 | no. 3

review articles

algorithms. Dantsin and Hirsch9 sur-
vey algorithms for SAT, while Malik
and Zhang28 discuss the deployment
of SAT solvers in practical applica-
tions. Husfeldt21 gives an introduc-
tion to applications of the principle of
inclusion and exclusion in algorith-
mics. Flum and Grohe13 give an intro-
duction to parameterized complexity
theory and its connections to subex-
ponential and exponential time com-
plexity. Williams37 relates improve
ments to exhaustive search with
superpolynomial lower bounds in cir-
cuit complexity.

Acknowledgments
The authors would like to thank
Andreas Björklund, Thore Husfeldt,
Mikko Koivisto, and Dieter Kratsch
for their comments that greatly helped
to improve the exposition in this
review. F.V.F. acknowledges the sup-
port of the European Research
Council (ERC), grant Rigorous
Theory of Preprocessing, reference
267959. P.K. acknowledges the sup-
port of the Academy of Finland,
Grants 252083 and 256287.�

References

	 1.	B ax, E.T. Inclusion and exclusion algorithm for the
Hamiltonian path problem. Inf. Process. Lett. 47, 4
(1993), 203–207.

	 2.	B ellman, R. Dynamic Programming, Princeton
University Press, 1957.

	 3.	B ellman, R. Dynamic programming treatment of
the travelling salesman problem. J. ACM 9
(1962), 61–63.

	 4.	B jörklund, A. Determinant sums for
undirected hamiltonicity. In Proceedings of the
51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2010) (2010), IEEE,
173–182.

	 5.	B jörklund, A., Husfeldt, T., Kaski, P., Koivisto, M.
Narrow sieves for parameterized paths and packings.
arXiv:1007.1161 (2010).

	 6.	B jörklund, A., Husfeldt, T., Koivisto, M. Set partitioning
via inclusion–exclusion. SIAM J. Comput. 39, 2
(2009), 546–563.

	 7.	C oppersmith, D., Winograd, S. Matrix multiplication
via arithmetic progressions. J. Symbolic Comput. 9, 3
(1990), 251–280.

	 8.	C ygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M.,
van Rooij, J.M.M., Wojtaszczyk, J.O. Solving
connectivity problems parameterized by treewidth
in single exponential time. In Proceedings of the
52nd Annual Symposium on Foundations of
Computer Science (2011), IEEE, 150–159.

	 9.	D antsin, E., Hirsch, E.A. Worst-case upper bounds. In
Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications. IOS Press,
2009, 403–424.

	10.	D owney, R.G., Fellows, M.R. Parameterized
Complexity, Springer, 1999.

	11.	E ppstein, D. Small maximal independent sets and
faster exact graph coloring. J. Graph Algorithms Appl.
7, 2 (2003), 131–140.

	12.	E ppstein, D. Quasiconvex analysis of
multivariate recurrence equations for backtracking
algorithms. ACM Trans. Algorithms 2, 4 (2006),
492–509.

	13.	F lum, J., Grohe, M. Parameterized Complexity Theory,
Springer, 2006.

	14.	F omin, F.V., Grandoni, F., Kratsch, D. A measure &

conquer approach for the analysis of exact
algorithms. J. ACM 56, 5 (2009).

	15.	F omin, F.V., Kratsch, D. Exact Exponential Algorithms,
Springer, 2010.

	16.	F ortnow, L. The status of the P versus NP problem.
Commun. ACM 52, 9 (2009), 78–86.

	17.	G arey, M.R., Johnson, D.S. Computers and
Intractability, A Guide to the Theory of
NP-Completeness, W.H. Freeman and
Company, 1979.

	18.	G olomb, S.W., Baumert, L.D. Backtrack programming.
J. ACM 12 (1965), 516–524.

	19.	H eld, M., Karp, R.M. A dynamic programming
approach to sequencing problems. J. Soc. Indust.
Appl. Math. 10 (1962), 196–210.

	20.	H olyer, I. The NP-completeness of edge-coloring.
SIAM J. Comput. 10, 4 (1981), 718–720.

	21.	H usfeldt, T. Invitation to algorithmic uses of
inclusion–exclusion. arXiv:1105.2942 (2011).

	22.	I tai, A., Rodeh, M. Finding a minimum circuit
in a graph. SIAM J. Comput. 7, 4 (1978), 413–423.

	23.	K arp, R.M. Dynamic programming meets the
principle of inclusion and exclusion. Oper. Res.
Lett. 1, 2 (1982), 49–51.

	24.	K nuth, D.E. The Art of Computer Programming,
vol. 2: Seminumerical Algorithms, 3rd edn,
Addison-Wesley, 1998.

	25.	K ohn, S., Gottlieb, A., Kohn, M. A generating function
approach to the traveling salesman problem.
In Proceedings of the ACM Annual Conference (ACM
1977) (1977), ACM Press, 294–300.

	26.	K oivisto, M. Optimal 2-constraint satisfaction via
sum-product algorithms. Inform. Process. Lett. 98, 1
(2006), 24–28.

	27.	L awler, E.L. A note on the complexity of the
chromatic number problem. Inf. Process. Lett. 5, 3
(1976), 66–67.

	28.	 Malik, S., Zhang, L. Boolean satisfiability: From
theoretical hardness to practical success. Commun.
ACM 52, 8 (2009), 76–82.

	29.	 Moon, J.W., Moser, L. On cliques in graphs. Israel J.
Math. 3 (1965), 23–28.

	30.	 Mulmuley, K., Vazirani, U.V., Vazirani, V.V. Matching is
as easy as matrix inversion. Combinatorica 7, 1
(1987), 105–113.

	31.	N iedermeier, R. Invitation to Fixed-Parameter
Algorithms, Oxford University Press, 2006.

	32.	S trassen, V. Gaussian elimination is not optimal.
Numer. Math. 13 (1969), 354–356.

	33.	V assilevska Williams, V. Multiplying matrices faster
than Coppersmith-Winograd. In Proceedings of 44th
ACM Symposium on Theory of Computing (STOC
2012) (2012), ACM, 887–898.

	34.	V azirani, V.V. Approximation Algorithms, Springer, 2001.
	35.	 Walker, R.J. An enumerative technique for a class of

combinatorial problems. In Proceedings of Symposia
in Applied Mathematics, vol. 10, American
Mathematical Society, 1960, 91–94.

	36.	 Williams, R. A new algorithm for optimal 2-constraint
satisfaction and its implications. Theoret. Comput.
Sci. 348, 2–3 (2005), 357–365.

	37.	 Williams, R. Improving exhaustive search implies
superpolynomial lower bounds. In Proceedings of
42nd ACM Symposium on Theory of Computing
(2010), ACM, 231–240.

	38.	 Woeginger, G. Exact algorithms for NP-hard
problems: a survey. In Combinatorial
Optimization – Eureka, You Shrink! (2003),
volume 2570 of Lecture Notes in Computer
Science, Springer, 185–207.

	39.	 Woeginger, G. Space and time complexity of exact
algorithms: some open problems. In Proceedings of
the 1st International Workshop on Parameterized and
Exact Computation (2004), volume 3162 of Lecture
Notes in Computer Science, Springer, 281–290.

	40.	Y ates, F. The Design and Analysis of Factorial
Experiments, Imperial Bureau of Soil
Science, 1937.

	41.	 Zykov, A.A. On some properties of linear complexes.
Mat. Sbornik N.S. 24, 66 (1949), 163–188.

Fedor V. Fomin (fomin@ii.uib.no) is a professor in the
Institutt for Informatikk, University of Bergen, Norway.

Petteri Kaski (petteri.kaski@aalto.fi) is an Academic
Research Fellow in the Department of Information and
Computer Science at Aalto University, Aalto, Finland.

© 2013 ACM 0001-0782/13/03

We conclude with three challenge
problems, each of which at first sight
appears quite similar to one of the
three surprises we have covered in this
article. Frustratingly enough, however,
there has been no progress at all on
these problems.

MAX-3-SAT. We have seen that MAX-2-
SAT can be solved in time O (2ωn/3) essen-
tially because of the existence of
nontrivial algorithms for matrix multi-
plication. But no such tools are avail-
able when one considers instances with
clauses of length 3 instead of length 2.
The challenge is to find an algorithm
that runs in time O ( (2 − ε)n) for MAX-3-
SAT, where n is the number of variables
and ε > 0 is a constant independent of n.

Edge Coloring. The edge-coloring prob-
lem asks us to color the edges of a
graph using the minimum number of
colors such that the coloring is proper,
that is, any two edges that share an
endvertex must receive different col-
ors. It is known that the number of
colors required is either ∆ or ∆ + 1,
where ∆ is the maximum degree of a
vertex, and it is NP-complete to decide
which of the two cases occurs.20 For a
graph G, the edge-coloring of G is
equivalent to deciding whether the
chromatic number of the line graph
L(G) of G is ∆ or ∆ + 1, which implies
that edge-coloring can be solved in
time 2mmO (1), where m is the number of
edges in G. The challenge is to find an
algorithm that runs in time O ( (2 − ε)m)
where ε > 0 is independent of m.

Traveling Salesman. While the
Hamiltonian cycle problem can be
solved in randomized time O (1.66n),
no such algorithm is known for the
Traveling Salesman Problem with n
cities and travel costs between cities
that are nonnegative integers whose
binary representation is bounded in
length by a polynomial in n. The chal-
lenge is to find an algorithm that runs
in time O ( (2 − ε)n) where ε > 0 is inde-
pendent of n.

Further Reading
Beyond the highlighted results in this
article, the recent book of Fomin and
Kratsch15 and the surveys of
Woeginger38, 39 provide a more in-depth
introduction to exact exponential

