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“Fundamentals of RL”

• What is RL?

• Key RL Theory
• MDPs

• Policies

• Value Functions

• Key Solution Methods
• Dynamic Programming

• Monte Carlo

• Temporal-Difference

“Frontiers of RL”

• Generalisation & Scaling Up

• Deep RL
• Value-Based: DQN

• Policy-Based: REINFORCE

• Actor-Critic: DDPG

• Research Topics
• Offline RL

• Inverse RL

• Intrinsically-Motivated RL

• Hierarchical RL
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Today’s Lecture Tomorrow’s Lecture



What is Reinforcement Learning?

Agent

Environment

Action
Agent takes action in 

its environment.

State
Agent observes the 

immediate consequences 
of its actions.

Reward
Agent receives some 

immediate reward signal.
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Reinforcement Learning (RL) is a computational approach to goal-directed learning from interaction.

RL is learning how to act: how to map states to actions in order to maximise long-term reward.



What Can Reinforcement Learning Do?

• In RL, we aim to solve sequential decision problems.
• Our agent must take a sequence of actions in order to reach its goal.

• The overall reward it earns depends on the whole sequence of actions.

AlphaGo Zero (Silver et al., 2017) TD-Gammon (Tesauro, 1992-1995) DQN (Mnih et al., 2013-2015)

Image Credit: CNET.com, Özgür Şimşek, DeepMind
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https://www.cnet.com/news/google-deepmind-hooked-us-on-go-the-geekiest-game-youve-never-heard-of/
https://youtu.be/TmPfTpjtdgg


What Can Reinforcement Learning Do?

• In RL, we aim to solve sequential decision problems.
• Our agent must take a sequence of actions in order to reach its goal.

• The overall reward it earns depends on the whole sequence of actions.

• The RL framework is very flexible, and can be applied to many 
different problems in many different ways.

• If a given problem requires our agent to make a sequence of decisions 
in order to reach some goal, we can probably make use of RL.

Many, many application areas!
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Key Features of Reinforcement Learning

• Rewards can be delayed.

• Short-term sacrifices may lead to long-term gains.

• Trade-off between exploration and exploitation.

• It’s not supervised learning.
• We don’t tell our agent which actions to choose.
• Our agent learns through trial-and-error.

• It’s not unsupervised learning.
• Our agent isn’t trying to find hidden structure in 

unlabelled data.

• RL is a separate branch of machine learning.

Image Credit: Wikimedia Commons
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https://commons.wikimedia.org/wiki/File:Typical_Tetris_Game.svg


The Gold Gridworld
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North

South

EastWest

How can we formally represent the interaction 
between an agent and this environment?

Using this representation, how can we train an 
agent to maximise long-term reward?



The Agent-Environment Interaction
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Environment

Agent

State
𝑆𝑡

Reward
𝑅𝑡

𝑅𝑡+1

𝑆𝑡+1

Action
𝐴𝑡

Figure adapted Sutton & Barto (2018)

𝑆0

𝑅1

𝐴0

𝑆1

𝑅2

𝐴1

𝑆2

𝑅3

𝐴2

𝑆3 …

𝜏 = 𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3 …

Our agent’s experience 
forms the basis of all 

learning in RL.



Episodic & Continuing Tasks

Episodic Tasks

• Interaction naturally splits into 
episodes.
• Example: games of chess.

• The environment resets when 
our agent reaches a terminal 
state at time-step 𝑇.

Continuing Tasks

• Interaction continues forever
with no clear breaks.
• Example: a mars rover exploring 

its environment.

• There are no terminal states or 
final time-steps.
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Learning a Policy

• Our agent should learn a policy, a function that determines which 
action it should take in each state.
• A policy 𝜋𝑡(𝑠, 𝑎) returns the probability of selecting action 𝑎 in state 𝑠 at 

time-step 𝑡.

• The agent should learn a policy that maximises the total discounted 
return – the discounted sum of all future rewards.

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯
= Σ𝑘=0

∞ 𝛾𝑘𝑅𝑡+𝑘+1

11

For episodic tasks, we can use 𝛾 = 1.0. For continuing tasks, we must use 𝛾 < 1.0.



What is a State?

• The state at time-step 𝑡 should contain whatever relevant information 
is available to our agent about its environment at time-step 𝑡.
• It could be very simple (e.g., a pair of coordinates on a grid).

• It could be more complex (e.g., pixel-inputs from a camera).

• Importantly, it should summarise all past information relevant to our 
agent’s decision-making process.
• Specifically, it should possess the Markov property.

𝑃 𝑆𝑡+1, 𝑅𝑡+1 𝑆0, 𝐴0, 𝑅1, … , 𝑅𝑡, 𝑆𝑡 , 𝐴𝑡 = 𝑃(𝑆𝑡+1𝑅𝑡+1|𝑆𝑡, 𝐴𝑡)
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Given these…These should not give us 
additional information.



Markov Decision Processes (MDPs)

• If a sequential decision problem has the Markov property, then it is a 
Markov Decision Process (MDP).

• To define an MDP, we need:
• A set of states: 𝑆

• A set of actions available in each state: 𝐴 𝑠 , 𝑠 ∈ 𝑆

• A transition function: 𝑝 𝑠′ 𝑠, 𝑎 , 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴 𝑠

• A reward function: 𝑟 𝑠, 𝑎, 𝑠′ , 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠)

• An initial state distribution: ℎ 𝑠 , 𝑠 ∈ 𝑆

• A discount factor: 0 ≤ 𝛾 ≤ 1

• We will often combine 𝑝 and 𝑟 into 𝑝(𝑠′, 𝑟|𝑠, 𝑎).

• If 𝑆 and 𝐴(𝑠) are finite, then it is a finite MDP.
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Markov Decision Processes (MDPs)

• To define an MDP, we need:
• A set of states: 𝑆

• A set of actions available in each state: 𝐴 𝑠 , 𝑠 ∈ 𝑆

• A transition function: 𝑝 𝑠′ 𝑠, 𝑎 , 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴 𝑠

• A reward function: 𝑟 𝑠, 𝑎, 𝑠′ , 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠)

• An initial state distribution: ℎ 𝑠 , 𝑠 ∈ 𝑆

• A discount factor: 0 ≤ 𝛾 ≤ 1 14

North

South

EastWest

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

𝑆 = 1,2,3, … , 15,16

𝐴 𝑠 = 𝑁, 𝑆, 𝐸, 𝑊  ∀𝑠 ∈ 𝑆

+10 reward for transitioning to state 16,
−1 reward otherwise.

ℎ 𝑠 = ቊ
1.0 if 𝑠 = 1 
0.0 otherwise

𝛾 = 1.0



What Does an RL Algorithm Do?

It should tell us how to use experience generated 
by an agent to modify its policy in order to 

maximise the discounted return.
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Dynamic
Programming

Monte Carlo
Methods

Temporal Difference
Methods



Value Functions

• The value of a state is the return that our agent can expect to earn if 
it starts in a given state and then follows its policy thereafter.

• The value of taking an action in a state is the return that our agent 
can expect to earn if it starts in a given state, takes a given action, and 
then follows its policy thereafter.

• Note that values are defined with respect to a specific policy.
• The value of being in a given state or taking a given action might be very 

different depending on what policy our agent is using!
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Value Functions

• State-Value Function

𝑣𝜋 𝑠 ≐ 𝐸𝜋{𝐺𝑡 𝑆𝑡 = 𝑠 = 𝐸𝜋 ෍

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠

• Action-Value Function
𝑞𝜋 𝑠, 𝑎 ≐ 𝐸𝜋{𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝐸𝜋 ෍

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

18
𝐸𝜋{⋅} denotes the expected value under a given policy 𝜋.



Comparing Policies

• We can use value functions to compare policies.

• Policy 𝜋 is as good as or better than policy 𝜋′ if 𝜋 has at least as high a 
state-value as 𝜋′ in every state.

𝜋 ≥ 𝜋′ if and only if 𝑣𝜋 𝑠 ≥ 𝑣𝜋′ 𝑠 ∀𝑠 ∈ 𝑆
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Optimal Policies

• There is always at least one policy that is better than or equal to all 
other policies. This is the optimal policy, denoted 𝜋∗.

• Optimal policies share the same optimal state-value function:
𝑣∗ 𝑠 = max

𝜋
𝑣𝜋 𝑠 ∀𝑠 ∈ 𝑆

• Optimal policies also share the same optimal action-value function:
𝑞∗ 𝑠, 𝑎 = max

𝜋
𝑞𝜋 𝑠, 𝑎 ∀𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴(𝑠)
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From Value Functions to Policies
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𝐴 𝐵

𝐵′

𝐴′

+10

+5

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

Gridworld 𝒗∗ 𝝅∗

E

S

N

W

Figure adapted from Sutton & Barto (2018)

The optimal policy 𝜋∗ chooses actions that maximise 𝑟 + 𝑣∗ 𝑠′ .
Values computed using 𝛾 = 0.9.



Policy Evaluation & Improvement

• Policy Evaluation: Finding the value 
function 𝑣𝜋 for a given policy 𝜋.

𝜋 → 𝑣𝜋

• Policy Improvement: Acting 
greedily with respect to a value 
function 𝑣𝜋 to yield a new policy, 𝜋′.

greedy 𝑣𝜋 → 𝜋′

• The policy improvement theorem
guarantees that 𝜋′ ≥ 𝜋.
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Generalised Policy Iteration

𝜋∗ 𝑣∗

𝜋 𝑣𝜋

Policy Evaluation

Policy Improvement

𝜋 → 𝑣𝜋

greedy 𝑣𝜋 → 𝜋

…

Everything here applies to action-value functions 𝑞𝜋 too!



Dynamic Programming Methods
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𝑣𝜋 𝑠 = ෍

𝑎

𝜋 𝑠, 𝑎 ෍

𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 + 𝛾𝑣𝜋 𝑠′

Bellman Equation for 𝑣𝜋

Value of a 
State

𝑠

𝑎

𝑟

𝑠′

Value of its 
Successors

Bootstrapping
Basing one estimate on another.

The estimate of 𝑣𝜋 𝑠  is based 
on an estimate of 𝑣𝜋 𝑠′ .



Dynamic Programming Methods
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𝑣∗ 𝑠 = max
𝑎

෍

𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 + 𝛾𝑣∗ 𝑠′

Bellman Equation for 𝑣𝜋

Value of a 
State

𝑠

𝑎

𝑟

𝑠′

Maximum Over
Actions

Value of its 
Successors

Problem: to solve this 
directly, we need full 

knowledge of 𝑝 𝑠′, 𝑟 𝑠, 𝑎 .



Monte Carlo Methods
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…

𝑆0 𝐴0

𝑅1

𝑆1 𝐴1 𝐴𝑇−1

𝑅𝑇

𝑆𝑇

• Monte Carlo methods learn directly from our agent’s experience.

• How would a Monte Carlo method estimate the value of a state 𝑆0?
• Sample many episodes of experience starting from 𝑆0 following policy 𝜋.

𝜏 = 𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3 … , 𝑅𝑇

• Estimate 𝑣𝜋(𝑆0) by averaging the returns our agent observes after visiting 𝑆0, 
computed across all the sample trajectories.

• Sample returns may vary between episodes, but our answer will 
converge upon the true 𝑣𝜋 if we average across enough episodes.
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Figure adapted from Özgür Şimşek

What information do we use to 
estimate the value of this state?
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Dynamic Programming Methods
We update the value of a state based on all the outcomes (i.e., 

immediate rewards 𝑟 and next states 𝑠′ that can be reached from it. 
Requires full knowledge 𝑝 𝑠′, 𝑟 𝑠, 𝑎  of the environment.

Figure adapted from Özgür Şimşek
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Monte Carlo Methods
We update the value of a state based on full sample returns 

generated by our agent after starting in that state.
Requires full episodes of experience, so can only be used with episodic tasks.

Figure adapted from Özgür Şimşek
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Figure adapted from Özgür Şimşek

Dynamic
Programming

Monte Carlo
Methods
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Figure adapted from Özgür Şimşek

Dynamic
Programming

Monte Carlo
Methods

Temporal 
Difference
Methods
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Temporal-Difference Methods
We can update the value of a state using a single time-step of experience, based

on the immediate reward earned and value of the next-state reached.

Figure adapted from Özgür Şimşek
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Figure adapted from Özgür Şimşek

𝑉 𝑆𝑡 ← 1 − 𝛼 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1

Old Estimate New Estimate (TD Target)
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Figure adapted from Özgür Şimşek

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 − 𝛼𝑉(𝑆𝑡) + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡

𝑉 𝑆𝑡 ← 1 − 𝛼 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1



Estimating Action-Values

• Updating State-Value Estimates

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡

• Updating Action-Value Estimates

𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄 𝑆𝑡 , 𝐴𝑡
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TD Target

TD Target



Exploration vs. Exploitation

• Our agent can’t always do what it currently thinks is “best”.
• There might be better ways of doing things!

• In other words, our agent needs to explore.

• To guarantee convergence, our agent needs to maintain exploration.
• Given an infinite number of episodes, our agent should visit every state 𝑠 and 

choose every action 𝑎 ∈ 𝐴(𝑠) an infinite number of times.

• A simple solution is to use a soft policy, such as 𝝐-greedy.
• With probability 1 − 𝜖, choose the optimal action.

• With probability 𝜖, choose a random action.

35
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𝑆 𝑆′

𝐴 𝐴′

𝑅
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𝑆
𝐴

𝑅
𝑆′ max

𝑎
𝑄 𝑆′, 𝑎



Example: Cliff-Walking Problem

38

S GThe Cliff
Q-Learning

𝜖 = 0.1

Sarsa
𝜖 = 0.1

Figure from Sutton & Barto (2018)

Deterministic Actions.
−1 per time-step.
−100 for falling off the cliff.



Example: Cliff-Walking Problem
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Figures from Sutton & Barto (2018)

S GThe Cliff
Q-Learning

𝜖 = 0.1

Sarsa
𝜖 = 0.1

Deterministic Actions.
−1 per time-step.
−100 for falling off the cliff.

Sum of rewards 
per episode 

during training.



Advantages of TD Learning

• TD methods do not require a model of the environment.
• They can learn using only our agent’s experience, like MC methods.

• TD methods can be fully incremental.
• They bootstrap, like DP methods.

• We can learn before the end of an episode.

• We can learn without reaching the end of an episode.

• We can learn from fragments of experience shorter than full episodes.
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In Today’s Lecture

41

Dynamic 
Programming 

Methods

Monte Carlo 
Methods

Temporal-
Difference 
Methods

MDP Policy Return Value

In Tomorrow’s Lecture
Applying these fundamental concepts to solve larger, more complex problems.

Active research topics and state-of-the-art in reinforcement learning.

Q-LearningSarsa
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Reinforcement Learning: An Introduction (Second Edition)
Richard S. Sutton & Andrew G. Barto

If you’d like to dive deeper into what was introduced today, I’d 
strongly recommend reading through Chapters 1, 3, 4, 5, 6.

Available for free at: http://incompleteideas.net/book/the-book.html 

http://incompleteideas.net/book/the-book.html
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