Introduction to Reinforcement Learning
Lecture 1: Fundamentals of RL

Joshua B. Evans
jbe25@bath.ac.uk

Bath Reinforcement Learning Laboratory
Department of Computer Science

W@ UNIVERSITY OF
(50 BATH

Denmark
Strait

North
Atlantic
Ocean

oSevilla

..~ (DENMARK)

Greenland

Europe

Scale 1:4,900,000
0, 100 200 300 400 Kilometers

0 100 200 300
Sea
0 100 200 300 400 Miles
Norwegian
Sea
Faroe slands
Gl
]
o
37 Srettand
o S

Bath, Ul¢

wx)

KINGDOM
.

oo of Man 1

North
Sea

~eEdinburgh

sLiverpool

UNITED

400 Nautical Miles

A

Al
ty
T
*

i \:\.omu

Otand

Baltic
Sea

Gdarisk!

i
"

am NETH
Celtic Amsterdamiy” Poznaiie 5
Sea N X WarsawX.
;. o2 & L GERMANY
English Channel (-
— A
g
i 5
VIenna*
‘%‘}‘u STRIA
Bay of
Biscay
= *
Bilbao® Belgrade
SERBIA
AND
: *Florence - MONTENEGRO
ANDORRA! 5 Adriatie o o Pristina,
Zaragoza, *NITALY'\ ‘Sea = 2
Madrid, Barcelona 3 «Rome
> e
SPAIN Bolearic \ % _oNaples wBari
” ’
Valencia Sardinia) Tyrrtonian
Soa
Balearic
Isiands
: lonian
Mediterranean Sea Falermo Sea

*Oran

*
Algiers

ALGERIA

Sleily

wValletta
MALTA

/" FINLAND

Barents
Sea

o Cluj-Napoca
ROMANIA

Bucharest 4
«oCralova

Mediterranean

.
‘Chormobyl'

UKRAINE

P

Hun g

ol i

*Kharkiv

* Kiev

e

b SN
AR

Dnipropetrovs'k
.
Donets'k

5
3 Sevastopole

2
me Black Sea

Irékleis
i on

Croto

Sea

Today’s Lecture Tomorrow’s Lecture

“Fundamentals of RL” “Frontiers of RL”
* What is RL? e Generalisation & Scaling Up

* Deep RL
e Value-Based: DQN
* Policy-Based: REINFORCE
* Actor-Critic: DDPG

* Research Topics

* Key RL Theory
 MDPs
* Policies
e Value Functions

* Key Solution Methods e Offline RL
* Dynamic Programming e Inverse RL
* Monte Carlo * Intrinsically-Motivated RL

* Temporal-Difference e Hierarchical RL

What is Reinforcement Learning?

Reinforcement Learning (RL) is a computational approach to goal-directed learning from interaction.

Environment

State

Agent observes the
immediate consequences
of its actions.

Reward Action

Agent receives some Agent takes action in
immediate reward signal. its environment.

Agent

RL is learning how to act: how to map states to actions in order to maximise long-term reward.

What Can Reinforcement Learning Do?

* In RL, we aim to solve sequential decision problems.
e Our agent must take a sequence of actions in order to reach its goal.
* The overall reward it earns depends on the whole sequence of actions.

8
'\ Google DeepMind !

Challenge Match

<

(N
L i *
00:36:22)* g @

AlphaGo Zero (Silver et al., 2017) TD-Gammon (Tesauro, 1992-1995) DQN (Mnih et al., 2013-2015)

5
Image Credit: CNET.com, Ozgiir Simsek, DeepMind

https://www.cnet.com/news/google-deepmind-hooked-us-on-go-the-geekiest-game-youve-never-heard-of/
https://youtu.be/TmPfTpjtdgg

What Can Reinforcement Learning Do?

* In RL, we aim to solve sequential decision problems.
e Our agent must take a sequence of actions in order to reach its goal.
* The overall reward it earns depends on the whole sequence of actions.

* The RL framework is very flexible, and can be applied to many
different problems in many different ways.

* If a given problem requires our agent to make a sequence of decisions
in order to reach some goal, we can probably make use of RL.

Many, many application areas!

Key Features of Reinforcement Learning

* Rewards can be delayed.
* Short-term sacrifices may lead to long-term gains.
* Trade-off between exploration and exploitation.

* It’s not supervised learning.
 We don’t tell our agent which actions to choose.
* Our agent learns through trial-and-error.

* It’s not unsupervised learning.

* Our agent isn’t trying to find hidden structure in
unlabelled data.

* RL is a separate branch of machine learning.

Image Credit: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Typical_Tetris_Game.svg

The Gold Gridworld

West

North

East

South How can we formally represent the interaction
between an agent and this environment?

Using this representation, how can we train an
agent to maximise long-term reward?

The Agent-Environment Interaction

> Agent

>

State Reward -

S R ction

t t 4,

Our agent’s experience _ Riy1
forms thfe ba?5|s of all Environment ;

learning in RL. P St+1

Ao A4 Az

T = So,Ao, Rl,Sl,Al, Rz,Sz,Az, R3,S3

Figure adapted Sutton & Barto (2018)

Episodic & Continuing Tasks

Episodic Tasks
* Interaction naturally splits into

episodes.
* Example: games of chess.

e The environment resets when
our agent reaches a terminal
state at time-step T.

Continuing Tasks
* Interaction continues forever
with no clear breaks.
 Example: a mars rover exploring
its environment.

e There are no terminal states or
final time-steps.

10

Learning a Policy

* Our agent should learn a policy, a function that determines which
action it should take in each state.

* A policy (s, a) returns the probability of selecting action a in state s at
time-step t.

* The agent should learn a policy that maximises the total discounted
return — the discounted sum of all future rewards.

G = Rt ‘|k‘VRt+2 + Y2Ryy3 + -
= 2oV Ritr+1

For episodic tasks, we can use y = 1.0. For continuing tasks, we must use y < 1.0.

What is a State?

* The state at time-step t should contain whatever relevant information
is available to our agent about its environment at time-step t.

* It could be very simple (e.g., a pair of coordinates on a grid).
* It could be more complex (e.g., pixel-inputs from a camera).

* Importantly, it should summarise all past information relevant to our
agent’s decision-making process.

 Specifically, it should possess the Markov property.

P(St+1:Rt+1“SOJAO’R1’ '"JRt: St'At) — P(St+1Rt+1|StrAt)

These should not give us Given these...
additional information.

Markov Decision Processes (MDPs)

* If a sequential decision problem has the Markov property, then itis a
Markov Decision Process (MDP).

* To define an MDP, we need:
* Aset of states: S
A set of actions available in each state: A(s), s€ S
* A transition function: p(s'[s,a), s€S, s' €S, a € A(s)
* Areward function: r(s,a,s’), s€S, s" €S, a € A(s)
* An initial state distribution: h(s), s € S
 Adiscountfactor:0 <y <1

* We will often combine p and r into p(s’, r|s, a).
* If S and A(s) are finite, then it is a finite MDP.

Markov Decision Processes (MDPs)

13

14

15

16

10

11

12

1

West

* To define an MDP, we need:

* A set of states: S

North

East

South

S=1{1,23,..,15,16}
A(s) ={N,S,E, W} VsE€S

+10 reward for transitioning to state 16,
—1 reward otherwise.

_11.0 ifs=1
h(s) = {0.0 otherwise

y = 1.0

A set of actions available in each state: A(s), s€ S
A transition function: p(s'|s,a), s€ S, s' €S, a € A(s)
A reward function: r(s,a,s’), s€S, s' €S, a € A(s)

An initial state distribution: h(s), s € S

A discount factor: 0 <y <1

14

What Does an RL Algorithm Do?

It should tell us how to use experience generated
by an agent to modify its policy in order to
maximise the discounted return.

Dynamic

Programming

Monte Carlo
Methods

Temporal Difference
Methods

16

Value Functions

* The value of a state is the return that our agent can expect to earn if
it starts in a given state and then follows its policy thereafter.

* The value of taking an action in a state is the return that our agent
can expect to earn if it starts in a given state, takes a given action, and
then follows its policy thereafter.

* Note that values are defined with respect to a specific policy.

* The value of being in a given state or taking a given action might be very
different depending on what policy our agent is using!

Value Functions

e State-Value Function

() = En(GelSe = 5} = B) ¥*ReriralSe = 3

e Action-Value Function

qr (s, C})ooi E {G¢|S; =s,Ar = a}

= Ep z Y Resk+11Se =S, A = a

E.{-} denotes the expected value under a given policy 7.

Kk:O

(o

\k=0

\

Y,

\

~N"

J

Comparing Policies
* We can use value functions to compare policies.

* Policy 7 is as good as or better than policy 7’ if 7 has at least as high a
state-value as 7’ in every state.

> ifandonlyifv,(s) > v_(s) Vs€S

Optimal Policies

* There is always at least one policy that is better than or equal to all
other policies. This is the optimal policy, denoted ..

* Optimal policies share the same optimal state-value function:
v,(s) = maxv,(s) VSES
T

e Optimal policies also share the same optimal action-value function:
q.(s,a) = maxq,(s,a) Vs € S,Va € A(s)
T

™

From Value Functions to Policies

D

22.0

24.4

22.0

19.4

17.5

S

19.8

22.0

19.8

17.8

16.0

17.8

19.8

17.8

16.0

14.4

Al

16.0

17.8

16.0

14.4

13.0

Gridworld

The optimal policy , chooses actions that maximise r + v,(s").

Values computed using y = 0.9.
Figure adapted from Sutton & Barto (2018)

14.4

16.0

14.4

13.0

11.7

D,

Policy Evaluation & Improvement

* Policy Evaluation: Finding the value
function v, for a given policy .
T = Uy

* Policy Improvement: Acting
greedily with respect to a value

function v, to yield a new policy, ’.

ogreedy(v,) — '

* The policy improvement theorem
guarantees that 7’ > .

Everything here applies to action-value functions g, too!

Policy Evaluation

T (7
Wy(vn) T

Policy Improvement

[~ Uy

Generalised Policy Iteration

22

Dynamic Programming Methods

S
Bootstrapping
Basing one estimate on another.
a
The estimate of v, (s) is based
on an estimate of v,(s’). r

Value of a a
State

va()|=) 7(5,@)) p(s'7ls, @) [r + Vra(s)]

Value of its

Bellman Equation for v, successors

23

Dynamic Programming Methods

S

Maximum Over
Actions

Problem: to solve this
directly, we need full
knowledge of p(s', r|s, a).

v,(s)|= max »*|p(s’,r|s,a)lr + pv.(s")
Value of a a s’ r

State

Value of its

Bellman Equation for v,>tccessors

24

Monte Carlo Methods

* Monte Carlo methods learn directly from our agent’s experience.

* How would a Monte Carlo method estimate the value of a state S,?
* Sample many episodes of experience starting from S, following policy 7.

T = So,Ao, Rl' Sl'Ali RZJSZJAZJRBJSS ...,RT

* Estimate v;(Sy) by averaging the returns our agent observes after visiting S,
computed across all the sample trajectories.

* Sample returns may vary between episodes, but our answer will
converge upon the true v, if we average across enough episodes.

SO AO Sl Al AT—l ST

What information do we use to

() / estimate the value of this state?

26

Figure adapted from Ozgiir Simsek

Dynamic Programming Methods
We update the value of a state based on all the outcomes (i.e.,
immediate rewards r and next states s’ that can be reached from it.
Requires full knowledge p(s’,r | s,a) of the environment.

27
Figure adapted from Ozgiir Simsek

Monte Carlo Methods
We update the value of a state based on full sample returns
generated by our agent after starting in that state.
Requires full episodes of experience, so can only be used with episodic tasks.

28

Figure adapted from Ozgiir Simsek

Dynamic Monte Carlo

Programming Methods

29
Figure adapted from Ozgiir Simsek

Temporal
Difference
Methods

Dynamic Monte Carlo

Programming Methods

30
Figure adapted from Ozgiir Simsek

Temporal-Difference Methods
We can update the value of a state using a single time-step of experience, based
on the immediate reward earned and value of the next-state reached.

31

Figure adapted from Ozgiir Simsek

V(S) « (1 —a)V(Se) + alRerq + ¥V (Spy1)]
- o~
Old Estimate New Estimate (TD Target)

32
Figure adapted from Ozgiir Simsek

! \ 1 \ 1 \ 1 \) \ 1 1 \ 1 \
! \ 1 \ 1 \ I \) \ | 1 \ 1 \
/ \] \] \] \] \ ! \] \

V(S:) « (1 —a)V(Sy) + alRerq + ¥V (Ses1)]
V(Sy) « V(S) —aV(Sy) + alRey1 + ¥V (Set1)]
V(Se) « V(Se) + alReyq + vV (Ses1) —V(Sp)]

33

Figure adapted from Ozgiir Simsek

Estimating Action-Values

* Updating State-Value Estimates

V(Sy) « V(Se) + alRerq + ¥V (Ses1)|— V(Se)]

TD Target

* Updating Action-Value Estimates

Q(St, Ar) « QS Ap) + alRey1 +vQ(Sev1, Ars1)|— Q(Se, Ap)]

TD Target

Exploration vs. Exploitation

* Our agent can’t always do what it currently thinks is “best”.
* There might be better ways of doing things!
* In other words, our agent needs to explore.

* To guarantee convergence, our agent needs to maintain exploration.

e Given an infinite number of episodes, our agent should visit every state s and
choose every action a € A(s) an infinite number of times.

* A simple solution is to use a soft policy, such as e-greedy.
* With probability 1 — €, choose the optimal action.
* With probability €, choose a random action.

Sarsa (on-policy TD control) for estimating @ ~ ¢,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s, a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @) (e.g., e-greedy)
Q(S, A) + Q(S, A) + a[R +4Q(S", A") — Q(S, A)]
S+ 8 A+ A
until S is terminal

Q-learning (off-policy TD control) for estimating 7 ~ 7.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =

Loop for each episode:
Initialize S
Loop for each step of episode:

Choose A from S using policy derived from @ (e.g., e-greedy)

Take action A, observe R, S’
Q(S, A) « Q(S, A) + a[R+~
S« 5

until S is terminal

max, Q(S

max Q(S’,a)

Example: Cliff-Walking Problem

Sarsa
e =0.1
Q-Learning I

e =01 S The Cliff

N

Deterministic Actions.
W E —1 pertime-step.
S —100 for falling off the cliff.

Figure from Sutton & Barto (2018)

Example: Cliff-Walking Problerr

Sarsa
e =0.1
Q-Learning H
e=01 IS The Cliff "G
Sarsa
254
Sum of rewards -0 Q-learmin
per episode J
during training. e
-100 . ; . .
0 100 200 300 400

Figures from Sutton & Barto (2018) Episodes

1
500

N

-

S

Deterministic Actions.
E —1 per time-step.
—100 for falling off the cliff.

39

Advantages of TD Learning

 TD methods do not require a model of the environment.
* They can learn using only our agent’s experience, like MC methods.

* TD methods can be fully incremental.
* They bootstrap, like DP methods.
* We can learn before the end of an episode.
* We can learn without reaching the end of an episode.
* We can learn from fragments of experience shorter than full episodes.

In Today’s Lecture

Dynamic

Temporal-
Monte Carlo P

Programming Difference
Methods Methods Methods

In Tomorrow’s Lecture

Applying these fundamental concepts to solve larger, more complex problems.

Active research topics and state-of-the-art in reinforcement learning.

41

Reinforcement Learning: An Introduction (Second Edition)

Reinforcement Richard S. Sutton & Andrew G. Barto

Learning

An Introduction
second edition

If you'd like to dive deeper into what was introduced today, I'd
strongly recommend reading through Chapters 1, 3, 4, 5, 6.

Richard S. Sutton and Andrew G. Barto /

Available for free at: http://incompleteideas.net/book/the-book.html

42

http://incompleteideas.net/book/the-book.html

	Slide 1: Introduction to Reinforcement Learning Lecture 1: Fundamentals of RL
	Slide 2
	Slide 3
	Slide 4: What is Reinforcement Learning?
	Slide 5: What Can Reinforcement Learning Do?
	Slide 6: What Can Reinforcement Learning Do?
	Slide 7: Key Features of Reinforcement Learning
	Slide 8: The Gold Gridworld
	Slide 9: The Agent-Environment Interaction
	Slide 10: Episodic & Continuing Tasks
	Slide 11: Learning a Policy
	Slide 12: What is a State?
	Slide 13: Markov Decision Processes (MDPs)
	Slide 14: Markov Decision Processes (MDPs)
	Slide 15: What Does an RL Algorithm Do?
	Slide 16
	Slide 17: Value Functions
	Slide 18: Value Functions
	Slide 19: Comparing Policies
	Slide 20: Optimal Policies
	Slide 21: From Value Functions to Policies
	Slide 22: Policy Evaluation & Improvement
	Slide 23: Dynamic Programming Methods
	Slide 24: Dynamic Programming Methods
	Slide 25: Monte Carlo Methods
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Estimating Action-Values
	Slide 35: Exploration vs. Exploitation
	Slide 36
	Slide 37
	Slide 38: Example: Cliff-Walking Problem
	Slide 39: Example: Cliff-Walking Problem
	Slide 40: Advantages of TD Learning
	Slide 41: In Today’s Lecture
	Slide 42

