
Reinforcement learning

Prof Dr Marko Robnik-Šikonja
Intelligent Systems, Edition 2023

University of Ljubljana, Faculty of Computer and Information Science

References

• R. S. Sutton and A. G. Barto: Reinforcement Learning: An
Introduction, 2018, 2nd edition (the book is freely available)

• many papers, tutorials, online courses

• recently a revival due to deep reinforcement learning

some slides are courtesy of Andrew Barto, Peter Bodik and Lisa
Torrey

Machine Learning

• Classification:
• Given

• Training data

• Learn
• A model for making a single prediction or decision

xnew

ynew

Classification
Algorithm

Training Data
(x1, y1)
(x2, y2)
(x3, y3)

…

Model

Animal/Human Learning

Other?

Classification
xnew ynew

Memorization
x1 y1

Procedural

environment

decision

Procedural Learning

•Learning how to act to accomplish goals
•Given

• Environment that contains rewards

•Learn
• A policy for acting

•Important differences from classification
•You don’t get examples of correct answers
•You have to try things in order to learn

A Good Policy

Introduction to Reinforcement Learning

• Reinforcement learning (RL), questionable terminology
stemming from behavioristic psychology (behavior
reinforcement)

• Agent learning in the environment, performing actions

• Getting feedback from the environment (award,
punishment), not necessary immediately

• Trying to learn a policy leading to goals

• An example: playing a game without knowing the rules; after
1000 moves an opponent declares: you lost.

Agent

•Temporally situated

•Continual learning and planning

•Objective is to affect the environment

•Environment is stochastic and uncertain

Environment

actionstate

reward
Agent

What is Reinforcement Learning?

• Learning from interaction

• Goal-oriented learning: short term and possible long term
awards

• Learning about, from, and while interacting with an external
environment

• Learning what to do—how to map situations to actions—so
as to maximize a numerical reward signal

• Agent discovers which action in what circumstances give the
highest award

• Agent can build a model of its environment

• RL is not supervised learning, it is about trial and error
search, exploring, getting information from environment

Supervised Learning

Supervised Learning

System
Inputs Outputs

Training Info = desired (target) outputs

Error = (target output – actual output)

Reinforcement Learning

RL

System
Inputs Outputs (“actions”)

Training Info = evaluations (“rewards” / “penalties”)

Objective: get as much reward as possible

Key Features of RL

• Learner is not told which actions to take

•Trial-and-error search

•Possibility of delayed reward
• Sacrifice short-term gains for greater long-term gains

•The need to explore and exploit

•Considers the whole problem of a goal-directed
agent interacting with an uncertain environment

RL successful applications
• Robocup Soccer
• Financial asset management/Inventory

management
• Dynamic Channel assignment in mobile

communications
• Controlling elevators, industrial controllers,

robots …
• Robots: navigation, grasping, moving …
• Games: backgammon (TD-Gammon,

Jellyfish), Go (AlphaGo in combination with
deep neural networks), Atari video games,
poker, chess

• in LLMs

Example video: Atari game Breakout

https://www.youtube.com/watch?time_continue=3&v=TmPfTpjtdgg

Example video:Robot training

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, Sergey Levine. Learning to Walk via Deep Reinforcement Learning.
Robotics: Science and Systems (RSS). 2019.

https://www.youtube.com/watch?v=n2gE7n11h1Y

Components of RL
1/2

• Policy: what to do?
• Defines agents choices and actions

in a given time

• Represented with rules, table, neural networks etc.

• Result of search, planning, stochastic, etc.

• Reward: what is good?
• Feedback from environment, agent tries to maximize it

Policy

Reward

Value

Model of
environment

Components of RL
2/2

• Value: internal representation of what is good, it predicts reward
• Agent’s expectation of what can be expected in given state (long-term)

• Implicitly contains evaluation of next states

• Value has to be learned; use repetitions and sampling to estimate the value

• Model: what follows what
• Internal representation of the environment

• Agent can evaluate values and actions without performing them

• Optional component

Policy

Reward

Value

Model of
environment

Agent from the point of view of RL

external sensations

memory

state

reward

actions

internal

sensations

RL

agent

An Example: Tic-Tac-Toe

X XXO O

X

XO

X

O

XO

X

O

X

XO

X

O

X O

XO

X

O

X O

X

} x’s move

} x’s move

} o’s move

} x’s move

} o’s move

...

...... ...

...

x x

x

x o

x

o

xo

x

x

x
x

o

o

Assume an imperfect opponent:

—he/she sometimes makes mistakes

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

2. Now play lots of games.

To pick our moves,

look ahead one step:

State V(s) – estimated probability of winning

.5 ?

.5 ?

1 win

0 loss

0 draw

x

xxx

o
o

o
o

o
x

x

oo

o o
x

x
x

x
o

current state

various possible

next states*
Just pick the next state with the highest

estimated prob. of winning — the largest V(s);

a greedy move.

But 10% of the time pick a move at random;

an exploratory move.

RL Learning Rule for Tic-Tac-Toe

“Exploratory” move

s – the state before our greedy move

 s – the state after our greedy move

We increment each V(s) toward V( s) – a backup :

V(s)  V (s) +  V( s) − V (s) 

a small positive fraction, e.g.,  = .1

the step - size parameter

•

Our Move {
Opponent's Move {

Our Move {

Starting Position

•

•

•

a

b

c

d

ee'

Opponent's Move {

•
f

•g

Opponent's Move {
Our Move {

•

c *

*

*g

How can we improve this TTT player?

• Take advantage of symmetries

• representation/generalization

• How might this backfire?

• Do we need “random” moves? Why?

• Do we always need a full 10%?

• Can we learn from “random” moves?

• Can we learn offline?

• Pre-training from self play?

• Using learned models of opponent?

• . . .

E.g., generalization

Table Generalizing Function Approximator

State VState V

s

s

s

.

.

.

s

1

2

3

N

Train

here

E.g., generalization

Table Generalizing Function Approximator

State VState V

s

s

s

.

.

.

s

1

2

3

N

Train

here

Tic-Tac-Toe is just a toy example

• Finite, small number of states

• One-step look-ahead is always possible

• State completely observable

• . . .
 RL is not limited to a finite number of states; in problems with

infinite or very large number of states we only generate states
encountered during search

 RL is not limited to games or opponent’s response

The Agent-Environment Interface

26

Agent and environment interact at discrete time steps : t = 0,1, 2,

 Agent observes state at step t : st S

 produces action at step t : at  A(st)

 gets resulting reward : rt +1 

 and resulting next state: st +1

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a

The Agent Learns a Policy

• Reinforcement learning methods specify how the agent changes its
policy as a result of experience.

• Roughly, the agent’s goal is to get as much reward as it can over the
long run.

27

Policy at step t, t :

 a mapping from states to action probabilities

 t (s, a) = probability that at = a when st = s

Getting the degree of abstraction right

• Time steps need not refer to fixed intervals of real time.

• Actions can be low level (e.g., voltages to motors), or high
level (e.g., accept a job offer), “mental” (e.g., shift in focus
of attention),

• States can be low-level “sensations”, or they can be
abstract, symbolic, based on memory, or subjective (e.g.,
the state of being “surprised” or “lost”).

• An RL agent is not like a whole animal or robot.

• Reward computation is in the agent’s environment because
the agent cannot change it arbitrarily.

• The environment is not necessarily unknown to the agent,
only incompletely controllable.

28

Goals and Rewards

• Is a scalar reward signal an adequate notion of a
goal?—maybe not, but it is surprisingly flexible.

•A goal should specify what we want to achieve, not
how we want to achieve it.

•A goal must be outside the agent’s direct control—
thus outside the agent.

•The agent must be able to measure success:
• explicitly;
• frequently during its lifespan.

29

Robot in a room

• states

• actions

• rewards

• what is the solution?

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP

10% move LEFT

10% move RIGHT

reward +1 at [4,3], -1 at [4,2]

reward -0.04 for each step

Is this a solution?

• only if actions deterministic
• not in this case (actions are stochastic)

• solution/policy
• mapping from each state to an action

+1

-1

Optimal policy

+1

-1

Reward for each step -2

+1

-1

Reward for each step: -0.1

+1

-1

Reward for each step: -0.04

+1

-1

Reward for each step: -0.01

+1

-1

Reward for each step: +0.01

+1

-1

Returns

38

Suppose the sequence of rewards after step t is :

 rt +1, rt+ 2 , rt + 3,

What do we want to maximize?

In general,

we want to maximize the expected return, E Rt , for each step t.

Episodic tasks: interaction breaks naturally into

episodes, e.g., plays of a game, trips through a maze.

Rt = rt +1 + rt +2 + + rT ,

where T is a final time step at which a terminal state is reached,

ending an episode.

Returns for Continuing Tasks

39

Continuing tasks: interaction does not have natural episodes.

Discounted return:

 Rt = rt +1 + rt+ 2 +  2rt +3 + =  krt + k+1,
k =0





where  , 0    1, is the discount rate.

shortsighted 0   → 1 farsighted

An example: cart and pole

40

Avoid failure: the pole falling beyond

a critical angle or the cart hitting end of

track.

reward = +1 for each step before failure

 return = number of steps before failure

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:

reward = −1 upon failure; 0 otherwise

 return = − k , for k steps before failure

In either case, return is maximized by

avoiding failure for as long as possible.

Another Example

41

Get to the top of the hill

as quickly as possible.

reward = −1 for each step where not at top of hill

 return = − number of steps before reaching top of hill

Return is maximized by minimizing

number of steps to reach the top of the hill.

A Unified Notation

• In episodic tasks, we number the time steps of each episode starting from
zero.

• We usually do not have to distinguish between episodes, so we write st
instead of st,j for the state at step t of episode j.

• Think of each episode as ending in an absorbing state that always produces
reward of zero:

• We can cover all cases by writing

42

reached. always is state absorbing reward zeroa ifonly 1 be can where

,
0

1






=

++=
k

kt

k

t rR

Episodic task – finite horizon

• In time t, the agent is interested in h further states

• Rewards in that time are rt+1, rt+2, rt+3, ..., rt+h

Rt =rt+1 + rt+2 + rt+3 + ... + rt+h

• The agent maximizes expected reward in that period

)(max)(max
1


=

+=
h

k

ktt rERE

Finite horizon

• Two optimal behaviors
• h-step optimal action: on step 1, do an action which is optimal under

assumption that h-1 actions will follow, on step 2 do an action which
is optimal under assumption that h-2 actions will follow ...

• h-step receding action: on each step do an action which is optimal
under assumption that h actions will follow

• Limited look-ahead

• Suitability of finite horizon: episodic missions (e.g., labyrinth)

Continuous tasks

• No natural end, but …

… nearer actions are more important than more distant
ones

• Agent optimizes infinite sequence of rewards

• Rewards are geometrically discounted

• rewards: Rt = rt+1 + rt+2 + 2rt+3 + 3rt+4, ... for 0 <  < 1

•  (discount factor) can be interpreted as interest rate, a
trick to bound an infinite sum, probability of surviving
another step, short/far-sightedness

10),(max
0

1 


=

++ 
k

kt

krE

Average reward model

• Agent optimizes long-term average reward

• Downside: does not know the difference between near and
distant rewards

)
1

(lim
1


=

+
→

h

k

kt
h

r
h

E

An example: rewards

1. finite horizont, h=4
2. infinite horizont, γ=0.9
3. average expected reward

What one knows matters

• Do you know your environment?
• The effects of actions

• The rewards

• If yes, you can use Dynamic Programming
• More like planning than learning

• Value Iteration and Policy Iteration

• If no, you can use Reinforcement Learning (RL)
• Acting and observing in the environment

RL as Operant Conditioning

• RL shapes behavior using reinforcement
• Agent takes actions in an environment (in episodes)
• Those actions change the state and trigger rewards

• Through experience, an agent learns a policy for acting
• Given a state, choose an action
• Maximize cumulative reward during an episode

• Interesting things about this problem
• Requires solving credit assignment

• What action(s) are responsible for a reward?
• Requires both exploring and exploiting

• Do what looks best, or see if something else is really best?

Types of Reinforcement Learning

•Search-based: evolution directly on a policy
• E.g. genetic algorithms

•Model-based: build a model of the environment
• Then you can use dynamic programming
• Memory-intensive learning method

•Model-free: learn a policy without any model
• Temporal difference methods (TD)
• Requires limited episodic memory (though, more helps)

Types of Model-Free RL

•Actor-critic learning
• The TD version of Policy Iteration

•Q-learning
• The TD version of Value Iteration
• This is the most widely used RL algorithm

The Markov Property

•By “the state” at step t, we mean whatever information
is available to the agent at step t about its environment.

•The state can include immediate “sensations,” highly
processed sensations, and structures built up over time
from sequences of sensations.

• Ideally, a state should summarize past sensations so as
to retain all “essential” information, i.e. it should have
the Markov Property:

52

Pr st +1 =  s ,rt +1 = r st ,at ,rt , st −1,at −1, ,r1,s0 ,a0 =

 Pr st +1 =  s ,rt +1 = r st ,at 
for all  s , r, and histories st ,at ,rt , st −1,at −1, ,r1, s0 ,a0.

Markov Decision Processes

• If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

• If state and action sets are finite, it is a finite MDP.

• To define a finite MDP, you need to give:
• state and action sets

• one-step “dynamics” defined by transition probabilities:

• reward probabilities:

53



Ps  s

a = Pr st +1 =  s st = s,at = a  for all s,  s  S, a  A(s).



Rs  s

a = E rt +1 st = s,at = a,st +1 =  s   for all s,  s  S, a  A(s).

An Example of Finite MDP

•At each step, robot has to decide whether it should
(1) actively search for a can, (2) wait for someone to
bring it a can, or (3) go to home base and recharge.

•Searching is better but runs down the battery; if runs
out of power while searching, has to be rescued
(which is bad).

•Decisions made on basis of current energy level:
high, low.

•Reward = number of cans collected

54

Recycling Robot

Recycling Robot MDP

55

S = high,low 

A(high) = search, wait 

A(low) = search,wait, recharge 



R
search = expected no. of cans while searching

R
wait = expected no. of cans while waiting

 Rsearch  R
wait

Value Functions

•The value of a state is the expected return starting
from that state; depends on the agent’s policy:

•The value of taking an action in a state under policy
 is the expected return starting from that state,
taking that action, and thereafter following  :

56

State - value function for policy  :

V

(s) = E Rt st = s = E 

k
rt +k +1 st = s

k =0












Action - value function for policy  :

Q

(s, a) = E Rt st = s, at = a = E 

k
rt + k +1 st = s,at = a

k= 0












Bellman Equation for policy 

57

Rt = rt +1 +  rt +2 + 2rt + 3 + 3rt + 4

= rt +1 +  rt +2 +  rt +3 + 
2
rt + 4()

= rt +1 +  Rt +1

The basic idea:

So: V


(s) = E Rt st = s 

= E rt +1 +  V st +1() st = s 

Or, without the expectation operator:



V  (s) =  (s,a) Ps  s

a
Rs  s

a + V  ( s) 
 s


a



More on the Bellman Equation

58



V  (s) =  (s,a) Ps  s

a
Rs  s

a + V  ( s) 
 s


a



This is a set of equations (in fact, linear), one for each state.

The value function for  is its unique solution.

Backup diagrams:

for V


for Q


Gridworld

• Actions: north, south, east, west; deterministic.

• If it would take agent off the grid: no move but reward = –1

• Other actions produce reward = 0, except actions that move agent
out of special states A and B, as shown.

59

Gridworld

• Actions: north, south, east, west; deterministic.

• If would take agent off the grid: no move but reward = –1

• Other actions produce reward = 0, except actions that move agent
out of special states A and B as shown.

60

State-value function

for equiprobable

random policy;

 = 0.9

Optimal Value Functions
• For finite MDPs, policies can be partially ordered:

• There are always one or more policies that are better than or
equal to all the others. These are the optimal policies. We
denote them all  *.

• Optimal policies share the same optimal state-value function:

• Optimal policies also share the same optimal action-value
function:

62

    if and only if V

(s)  V

 
(s) for all s S

V

(s) = max


V


(s) for all s S

Q

(s,a) = max


Q


(s, a) for all s S and a A(s)

This is the expected return for taking action a in state s

and thereafter following an optimal policy.

Bellman Optimality Equation for V*

64



V (s) = max
a A (s)

Q 

(s,a)

= max
a A (s)

E rt +1 + V (st +1) st = s,at = a 

= max
a A (s)

Ps  s

a

 s

 Rs  s

a + V ( s) 

The value of a state under an optimal policy must equal

the expected return for the best action from that state:

The relevant backup diagram:

is the unique solution of this system of nonlinear equations.V


Bellman Optimality Equation for Q*

65



Q(s,a) = E rt +1 +  max
 a

Q(st +1,  a) st = s,at = a 

= Ps  s

a
Rs  s

a +  max
 a

Q( s ,  a) 
 s



The relevant backup diagram:

is the unique solution of this system of nonlinear equations.Q
*

Therefore, given , one-step-ahead search produces the

long-term optimal actions.

Why Optimal State-Value Functions are Useful

66

V


V


Any policy that is greedy with respect to is an optimal policy.

E.g., back to the gridworld:

*

What About Optimal Action-Value Functions?

67

Given , the agent does not even

have to do a one-step-ahead search:

Q
*



(s) = arg max

aA (s)
Q


(s,a)

Solving the Bellman Optimality Equation

• Finding an optimal policy by solving the Bellman optimality
equation requires the following:
• accurate knowledge of environment dynamics;

• enough space and time to do the computation;

• the Markov property.

• How much space and time do we need?
• polynomial in number of states (via dynamic programming

methods),

• BUT, number of states is often huge (e.g., backgammon has about
1020 states).

• We usually have to settle for approximations.

• Many RL methods can be understood as approximately
solving the Bellman optimality equation.

68

Dynamic programming

•main idea
• use value functions to structure the search for good

policies
• need a perfect model of the environment

• two main components
• policy evaluation: compute V from 
• policy improvement: improve  based on V

• start with an arbitrary policy
• repeat evaluation/improvement until convergence

Policy evaluation/improvement

• policy evaluation:  -> V

• Bellman eqn’s define a system of n eqn’s

• could solve, but will use iterative version

• start with an arbitrary value function V0, iterate until Vk converges

• policy improvement: V -> ’

• ’ either strictly better than , or ’ is optimal (if  = ’)

Policy/Value iteration

• Policy iteration

• two nested iterations; too slow

• don’t need to converge to Vk

• just move towards it

• Value iteration

• use Bellman optimality equation as an update

• converges to V*

Using dynamic programming

• need complete model of the environment and rewards
• robot in a room

• state space, action space, transition model

• can we use DP to solve
• robot in a room?

• backgammon?

• helicopter?

• DP bootstraps
• updates estimates on the basis of other estimates

Monte Carlo methods

• don’t need full knowledge of environment
• just experience, or

• simulated experience

• averaging sample returns
• defined only for episodic tasks

• but similar to DP
• policy evaluation, policy improvement

Monte Carlo policy evaluation

• want to estimate V(s)
= expected return starting from s and following 

• estimate as average of observed returns in state s

• first-visit MC
• average returns following the first visit to state s

s s
s0

+1 -2 0 +1 -3 +5
R1(s) = +2

s0

s0

s0

s0

s0

R2(s) = +1

R3(s) = -5

R4(s) = +4

V(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5

Monte Carlo control

• V not enough for policy improvement
• need exact model of environment

• estimate Q(s,a)

• MC control

• update after each episode

• non-stationary environment

• a problem
• greedy policy won’t explore all actions

Maintaining exploration

• key ingredient of RL

• deterministic/greedy policy won’t explore all actions
• don’t know anything about the environment at the beginning

• need to try all actions to find the optimal one

• maintain exploration
• use soft policies instead: (s,a)>0 (for all s,a)

• ε-greedy policy
• with probability 1-ε perform the optimal/greedy action

• with probability ε perform a random action

• will keep exploring the environment

• slowly move it towards greedy policy: ε -> 0

Simulated experience

• 5-card draw poker
• s0: A, A, 6, A, 2

• a0: discard 6, 2

• s1: A, A, A, A, 9 + dealer takes 4 cards

• return: +1 (probably)

• DP
• list all states, actions, compute P(s,a,s’)

• P([A,A,6,A,2], [6,2], [A,9,4]) = 0.00192

• MC
• all you need are sample episodes

• let MC play against a random policy, or itself, or another algorithm

Summary of Monte Carlo
• don’t need model of environment

• averaging of sample returns
• only for episodic tasks

• learn from:
• sample episodes
• simulated experience

• can concentrate on “important” states
• don’t need a full sweep

• no bootstrapping
• less harmed by violation of Markov property

• need to maintain exploration
• use soft policies

Value Iteration

void valueIteration() {
initialize V(s) arbitrarily
do{

foreach (s ∈ S) {
foreach (a ∈ A) {

Q(s,a) = R(s,a)+γ Σs′∈S T(s,a,s′)V(s′)
V(s) = maxaQ(s,a)

}
}

} while (! policy good enough) ;
}

Algorithm updates values backwards (from final states)

Value iteration: convergence

• If the maximum difference between two successive value
functions is less than ε, then the value of the greedy policy,
(the policy obtained by choosing, in every state, the action
that maximizes the estimated discounted reward, using the
current estimate of the value function) differs from the value
function of the optimal policy by no more than 2ε γ/(1−γ) at
any state.

• An effective stopping criterion for the algorithm

• Value iteration is very flexible. The assignments to V need
not be done in strict order, but instead can occur
asynchronously in parallel provided that the value of every
state gets updated infinitely often on an infinite run.

Policy iteration

The value function of a policy is just the expected infinite discounted reward that
will be gained, at each state, by executing that policy. It can be determined by
solving a set of linear equations. Once we know the value of each state under the
current policy, we consider whether the value could be improved by changing the
first action taken. If it can, we change the policy to take the new action whenever
it is in that situation. This step is guaranteed to strictly improve the performance
of the policy. When no improvements are possible, then the policy is guaranteed
to be optimal.

Approximate solutions

• Learning with time differences (TD),
a model is not needed, incremental, difficult for analysis

• Dynamic programming,
mathematically well defined problems with exact and
complete description of the environment

• Monte Carlo methods,
model is not necessary, conceptually simple, not
incremental, sampling complete trajectories in interaction
with environment (or model of environment)

• Efficiency, convergence

TD() learning

• Learning with time differences

• Previous states receive a portion of the difference to
successors

• For =0
V(st) = V(st) + c(V(st+1)- V(st))

• c is a parameter, slowly decreasing during learning assuring
convergence

• For  > 0, more than just immediate successors are taken
into account (speed)

Temporal Difference Learning

• combines ideas from MC and DP
• like MC: learn directly from experience (don’t need a model)

• like DP: bootstrap

• works for continuous tasks, usually faster then MC

• constant-alpha MC:
• have to wait until the end of episode to update

• simplest TD
• update after every step, based on the successor

target

MC vs. TD

• observed the following 8 episodes:
A – 0, B – 0 B – 1 B – 1 B - 1

B – 1 B – 1 B – 1 B – 0

• MC and TD agree on V(B) = 3/4

• MC: V(A) = 0
• converges to values that minimize the error on training data

• TD: V(A) = 3/4
• converges to ML estimate

of the Markov process
A B

r = 0

100%

r = 1

75%

r = 0

25%

Q-learning

• previous algorithms: on-policy algorithms
• start with a random policy, iteratively improve

• converge to optimal

• Q-learning: off-policy
• use any policy to estimate Q

• Q directly approximates Q* (Bellman optimality eqn)

• independent of the policy being followed

• only requirement: keep updating each (s,a) pair

• Sarsa

Q learning

• Watkins, 1989

• The most popular variant of time difference learning

• One step ahead

Q(st,at) = (1-c) Q(st,at) + c(rt+1+  maxa Q(st+1,a) - Q(st,at))

0 <= c,  <= 1

Q-Learning: Definitions

• Current state: s

• Current action: a

• Transition function: δ(s, a) = sʹ

• Reward function: r(s, a) Є R

• Policy π(s) = a

• Q(s, a) ≈ value of taking action a from state s

Markov property:
this is independent
of previous states

given current state

In classification we’d
have examples
(s, π(s)) to learn

from

The Q-function

•Q(s, a) estimates the discounted cumulative reward
• Starting in state s
• Taking action a
• Following the current policy thereafter

•Suppose we have the optimal Q-function
• What’s the optimal policy in state s?
• The action argmaxb Q(s, b)

•But we don’t have the optimal Q-function at first
• Let’s act as if we do
• And updates it after each step so it’s closer to optimal
• Eventually it will be optimal!

Q-Learning: The Procedure

Environment

s1

Agent
Q(s1, a) = 0
π(s1) = a1

a1

s2

r2

δ(s1, a1) = s2

r(s1, a1) = r2

Q(s1, a1)  Q(s1, a1) + Δ
π(s2) = a2

a2

δ(s2, a2) = s3

r(s2, a2) = r3

s3

r3

Q-Learning: Updates

),'(max),(),(bsQasrasQ b+⎯⎯

 With a discount factor to give later rewards less impact

   ),'(max),(),(1),(bsQasrasQasQ b ++−⎯⎯

 With a learning rate for non-deterministic worlds

),'(max),(),(bsQasrasQ b+⎯⎯

 The basic update equation

Q-Learning: Update Example
1 2 3

4 5 6

7 8 9

10 11

=→),(11 asQ

Q-Learning: Update Example
1 2 3

4 5 6

7 8 9

10 11

+=


0),(9 asQ

Q-Learning: Update Example
1 2 3

4 5 6

7 8 9

1
0

1
1

2

8 0),(+=→asQ



The Need for Exploration
1 2 3

4 5 6

7 8 9

1
0

1
1

23

4

5 6

=),(maxarg 2 asQ

=→best

Explore!

Q learning

Explore/Exploit Tradeoff

•Can’t always choose the action with highest Q-value
• The Q-function is initially unreliable
• Need to explore until it is optimal

•Most common method: ε-greedy
• Take a random action in a small fraction of steps (ε)
• Decay ε over time

•There is some work on optimizing exploration
• Kearns & Singh, ML 1998
• But people usually use this simple method

Q-Learning: Convergence

• Under certain conditions, Q-learning will converge to the
correct Q-function
• The environment model doesn’t change
• States and actions are finite
• Rewards are bounded
• Learning rate decays with visits to state-action pairs
• Exploration method would guarantee infinite visits to every

state-action pair over an infinite training period

Extensions: SARSA

 SARSA: Take exploration into account in updates
 Use the action actually chosen in updates

PIT!
=→

→

Regular:

SARSA:

)','(),(),(asQasrasQ +⎯⎯

),'(max),(),(bsQasrasQ b+⎯⎯

Sarsa

• again, need Q(s,a), not just V(s)

• control
• start with a random policy

• update Q and  after each step

• again, need -soft policies

st st+1
at st+2

at+1 at+2

rt rt+1

Extensions: Look-ahead

• TD(λ): a weighted combination of look-ahead distances
• The parameter λ controls the weighting

)'',''()','(),(),(2 asQasrasrasQ  ++⎯⎯

 Look-ahead: do updates over multiple states
 Use some episodic memory to speed credit assignment

1 2 3

4 5 6

7 8 9

10 11

Extensions: Eligibility Traces

• Eligibility traces: Lookahead with less memory
• Visiting a state leaves a trace that decays

• Update multiple states at once

• States get credit according to their trace

1 2 3

4 5 6

7 8 9

10 11

Extensions: Options and Hierarchies

• Options: Create higher-level actions

 Hierarchical RL: Design a tree of RL tasks

Room A Room B

Whole Maze

Extensions: Function Approximation

•Function approximation: allow complex environments
• The Q-function table could be too big (or infinitely big!)

• Describe a state by a feature vector
f = (f1 , f2 , … , fn)
• Then the Q-function can be any regression model

• E.g. linear regression:
Q(s, a) = w1 f1 + w2 f2 + … + wn fn

• Cost: convergence goes away in theory, though often not in practice

• Benefit: generalization over similar states

• Easiest if the approximator can be updated incrementally, like neural
networks with gradient descent, but you can also do this in batches

Measuring learning performance

• Eventual convergence to optimality
Many algorithms come with a provable guarantee of asymptotic
convergence to optimal behavior. This is reassuring, but useless
in practical terms.

• Speed of convergence to optimality
Optimality is usually an asymptotic result, and so convergence
speed is an ill-defined measure. More practical are
• speed of convergence to near-optimality (how near?)

• level of performance after a given time (what time?)

• Regret
expected decrease in reward gained due to executing the
learning algorithm instead of behaving optimally from the very
beginning; these results are hard to obtain.

Challenges in Reinforcement Learning

•Feature/reward design can be very involved
• Online learning (no time for tuning)
• Continuous features (handled by tiling)
• Delayed rewards (handled by shaping)

•Parameters can have large effects on learning speed
• Tuning has just one effect: slowing it down

•Realistic environments can have partial observability

•Realistic environments can be non-stationary

•There may be multiple agents

Do Brains Perform RL?

• Should machine learning researchers care?
• Planes don’t fly the way birds do; should machines learn the way people

do?

• But why not look for inspiration?

• Psychological research does show neuron activity associated
with rewards
• Really prediction error: actual – expected

• Primarily in the striatum

What People Do Better

•Parallelism
• Separate systems for positive/negative errors
• Multiple algorithms running simultaneously

•Use of RL in combination with other systems
• Planning: Reasoning about why things do or don’t work
• Advice: Someone to imitate or correct us
• Transfer: Knowledge about similar tasks

•More impulsivity
• Is this necessarily better?

•The goal for machine learning: Take inspiration
from humans without being limited by their
shortcomings

Some examples and details

An example: directing robot in 2d plane

• G.A.Rummery: Problem Solving with Reinforcement Learning, 1995

Robot in 2d: the settings

• sensors:
• five distance measures to nearest obstacle in 15 degree

forward arc
• always knows distance and angle to the goal

•payoff after the end of the trial (reaching goal,
collision with an obstacle or time out)

• start, goal and obstacles are randomly changed
after every trial

• robot has to learn a generalized reactive policy;
how?

Robot in 2d: actions and rewards

• 6 actions:
• (turn left 15º, turn right 15º, stay in the same direction) x (move

forward for a fixed distance d, do not move)

• rewards:
• 0 in every step except the final

• goal: if in a small fixed radius around the goal, +1

• crash: based on a distance d from the goal e.g. 0.5 exp(−
2𝑑𝑔𝑜𝑎𝑙

𝑑𝑚𝑎𝑥
),

(note: maximum is 0.5)

• time-out: as for crash + some small reward for not crashing, e.g., +0.3

• set  = 0.99 to reward faster findings of the goal

• set probability of exploration/exploitation

Using NN for 2-d robot

• coarse coding the inputs (e.g., with several input
sigmoids for each sensor)

•backpropagation with momentum term or eligibility
traces

•batch and on-line training

Some trajectories of trained robots

State representation

• pole-balancing
• move car left/right to keep the pole balanced

• state representation
• position and velocity of car

• angle and angular velocity of pole

• what about Markov property?
• would need more info

• noise in sensors, temperature, bending of pole

• solution
• coarse discretization of 4 state variables

• left, center, right

• totally non-Markov, but still works

Designing rewards

• robot in a maze
• episodic task, not discounted, +1 when out, 0 for each step

• chess
• GOOD: +1 for winning, -1 losing
• BAD: +0.25 for taking opponent’s pieces

• high reward even when lose

• rewards
• rewards indicate what we want to accomplish
• NOT how we want to accomplish it

• shaping
• positive reward often very “far away”
• rewards for achieving subgoals (domain knowledge)
• also: adjust initial policy or initial value function

Tutorial: Deep Reinforcement Learning
David Silver, Google DeepMind

Summary

• Reinforcement learning
• use when need to make decisions in uncertain environment
• actions have delayed effect

• solution methods
• dynamic programming

• need complete model

• Monte Carlo
• time difference learning (Sarsa, Q-learning)

• simple algorithms

• most work
• designing features, state representation, rewards

