University of Ljubljana, Faculty of Computer and Information Science

Nature
inspired
computing

Prof Dr Marko Robnik Sikonja
Intelligent Systems
Edition 2023

Contents

#* Introduction to evolutionary computation
Genetic algorithms

Genetic algorithms and automatic code
generation

Evolutionary and natural computation

Many engineering and computational ideas from nature work
fantastically!

Evolution as an algorithm

Abstraction of the idea:

*

X progress, adaptation - learning, optimization

Survival of the fittest - competition of agents, programs, solutions
Populations — parallelization

(Over)specialization — local extremes

Neuro-evolution, evolution of robots, evolution of novelty

* = X % »

revival of interest

Template of evolutionary program

generate a population of agents (objects, data structures)

do §

compute fitness (quality) of the agents

select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

immensely general -> many variants

A result of successful evolutionary
program

Solution Solution
Quality Quality
Search Space Search Space
a. The beginning search space b. The search space after

n generations

Main approaches

#* Genetic algorithms

Genetic programming

Swarm methods (particles, ants, bees, ...)
Self-organized fields

Differential evolution

* etc.

Genetic Algorithms - History

Pioneered by John Holland in the 1970’s
Got popularin the late 1980's
Based on ideas from Darwinian evolution

Can be used to solve a variety of problems that
are not easy to solve using other techniques

Chromosome, Genes and
Genomes

Chromosome

e e
[[T T T
B T 1]

Gene

Fenome
_,....-"

Evolution in the real world

Each cell of a living thing contains chromosomes - strings of DNA
Each chromosome contains a set of genes - blocks of DNA

*» Ealch g)ene determines some aspect of the organism (like eye
colour

A collection of genes is sometimes called a genotype

#* A collection of aspects (like eye colour) is sometimes called a
phenotype

Reproduction involves recombination of genes from parents and
then small amounts of mutation (errors) in copying

* '(Ij'_hefitness of an organism is how much it can reproduce before it
ies

Evolution based on “survival of the fittest”

#* Disputed notion, e.g., co-evolution, ecosystem view

Genotype and Phenotype

#* Genotype:

— Particular set of genes in a genome

#* Phenotype:

— Physical characteristic of the genotype (smart,
beautiful, healthy, etc.)

Genotype and Phenotype

. T .
- T T T
T

7
Genotype

Key terms

Individual - Any possible solution

Population - Group of all individuals

Search Space - All possible solutions to the problem
Chromosome - Blueprint for an individual

Trait - Possible aspect (features) of an individual

Allele - Possible settings of trait (black, blond, etc.)
Locus - The position of a gene on the chromosome

Genome - Collection of all chromosomes for an
individual

Biological equivalents

Evolution is a variation of alleles frequencies
through time.

Reproduction, variation (mutation, crossover),
selection

Evolutionary computation keywords

Representation: data structures, operations

-itness, heuristics

* * *®

Population variability

Local and global extremes
Coevolution

Variability of fitness function

A fitness function

Individuals

#1 [1fofols[a]s o] .
#2 [LLLLL] - |
#3 [JaliiToliTal

Fitness

Computations

--'--- =
#
- -
P [ol:TolsTol:]a] -
l-.-.-
‘-'

Hq ARAAN ||

#n [1]:Ja]e]:To]e]

Mormalize

Ranked Individuals

He Clijofof1jo)t

Hn [olddilalilol

9 lalilelilalilo

#p Lol [lolel]

#F#1 [Jalald0a]

#3 [([il:dalTold]

Gene representation

#* Bit vector

Numeric vectors

#* 5trings

Permutations

#* Trees: functions, expressions, programs

* .

Crossover

#* Single point/multipoint

Shall preserve individual objects

Crossover: bit representation

Parents: 1101011100 0111000101

Children: 1101010101 0111001100

Crossover: vector representation

Simplest form
Parents: (6.13, 4.89, 17.6, 8.2) (5.3, 22.9, 28.0, 3.9)
Children: (6.13, 22.9, 28.0, 3.9) (5.3, 4.89, 17.6, 8.2)

In reality: linear combination of parents

Linear crossover

The linear crossover simply takes a linear
combination of the two individuals.

#* Letx=(x,..xy)and y =(y,...yn)
Select a in (o, 1)
The results of the crossoveris a x + (1- a)y .

Possible variation: choose a different a for each
position.

Linear crossover example

#* Let o = 0.75 and we have this two individuals:
A=(51,2,10)and B=(2, 8, 4, 5)
then the result of the crossover is:

(3.75+0.5,0.75+ 2, 1.5+ 1, 7.5 + 1.25) = (4.25, 2.75,2.5, 8.75)

#* If we use the variation and we have a = (0.5, 0.25, 0.75,
0.5), the result is:

(2.5+1,0.25+6,1.5+1, 5+ 2.5) =(3.5, 6.25, 2.5, 7.5)

Crossover: trees

Permutations: travelling salesman
oroblem

#* gcCities: 1,2 ..9
#* bit representation using 4 bits?

¢ 00010010 0011 0100 0101 0110 01111000 1001

\7

¢ crossover would give invalid genes

\7

permutation and ordered crossover

\7
I\

keep (part of) sequences

\7

¢ use the sequence from second cut, keep already existing
192[4657[83 2> xxx|4657[xx ¥ 239|4657[18
459187623 =2 xxx|1876 |xx 41 392|1876]45

A demo: Eaters

*

Plant eaters are simple organisms, moving around in a
simulated world and eating plants

Fitness function: number of plants eaten

:

* * % »

An eater sees one square in front of its pointed end; it sees 4
possible things: another eater, plant, empty square or the wall

Actions: move forward, move backward, turn left, turn right
It is not allowed to move into the wall or another eater
Internal state: number between o and 15

The behavior is determined by the 64 rules encoded in its
chromosome; one rule for each of 16 states x 4 observations;
one rule is a pair (action, next state)

The chromosome therefore consists of length 64 x (4+2) bits =
384 bits

Crossover and mutation

https://math.hws.edu/eck/js/genetic-algorithm/GA.html

Gray coding of binary numbers

Keeping similarity

Binary Gray
0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100
1000 1100
1001 1101
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001

1111

1000

Adaptive crossover

Different evolution phases
Crossover templates
0 —first parent, 1 second parent

Possibly different dynamics of template

Gene Template

Parent 1{1.23.45.6 4.5 7.9 6.8 010101
Parent 2(4.7 2.31.6 3.26.4 7.7 100

0111
Child 1 (1.2 2.35.63.27.9 7.7 010100
Child 2 (4.7 3.4 1.6 4.5 6.4 6.8 011101

Mutation

Adding new information

Binary representation:
0111001100 --> 0011001100

Single point/multipoint
Random search?

amarckian (searching for locally best mutation)

Lamarckism is the hypothesis that an organism can
pass on characteristics that it has acquired through

La Marc kl dNISM yse or disuse during its lifetime to its offspring.

An Early Proposal of Evolution: Theory of Acquired Characteristics

LAMARCK'S GIRAFFE and stretching
until neck
becomes
Keeps stretching and progressively

longer A4
neck to reach stretehing # N
leaves higher
()rip.imﬂ 5 up on tree
short-necked k }
anceslor W -
i
A
.d

] ' 0\
() { \
\"“")"f&zn"“}g;“-

Driven by inner “need”

Jean Baptiste Lamarck (~ 1800) : Theory of Acquired Characteristics
* Use and disuse alter shape and form in an animal

* Changes wrought by use and disuse are heritable

* Explained how a horse-like animal evolved into a giraffe

Gaussian mutation

\When mutating one gene, selecting the new
value by choosing uniformly among all the
possible values is not the best choice
(empirically).

The mutation selects a position in the vector of
floats and mutates it by adding a Gaussian error:
a value extracted according to a normal
distribution with the mean o and certain variance
depending on the problem.

Template of evolutionary program

generate a population of agents (objects, data structures)

do §

compute fitness (quality) of the agents

select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

immensely general -> many variants

Evolutional model - who will reproduce

#* Keeping the good
Prevent premature convergence

Assure heterogeneity of population

Selection

Proportional
Rank proportional
#* Tournament
Single tournament

» Stochastic
universal sampling

selection
point

the roulette wheel

aneel is rotate,,

Weakest individual

$ == has smallest share of
the roulette wheel

Tournament selection

1. set t=size of the tournament,

p=probability of a choice

2. randomly sample t agents from population
forming a tournament

3. Se

4. Se

ect the best with probability p
ect second best with probability p(2-p)
ect third best with probability p(1-p)?

Stochastic universal sampling (SUS)
#* unbiased

selecting N agents

randomly chosen first position r € [0, F/N]

selected positionsr +i*F/N, i € o, 1,..., N-1]

determine chosen agents

[.J Total Hiness = I7

A B c D E

e <

FiN

S,

€ [0, F/N)

Replacement

* All

According to the fitness (roulette, rang,
tournament, randomly)

Elitism (keep a portion of the best)

Local elitism (children replace parents if they are
better)

Single tournament selection

1. randomly split the population into small groups

2. apply crossover to two best agents from each
roup, their offspring replace two worst agents
rom the group

advantage: in groups of size g the best g-2 progress
to next generation (we do not use good agents,
maximal quality does not decrease)

no matter the quality even the best agents have no
more than two offspring (we do not loose
population diversity)

computational load?

Population size

#* small, large?

Niche specialization

#* evolutionary niches are generally undesired

punish too similar agents

f'. =1 /q(r,i)

q(ri)={1 ; sim(i) <=4,
sim(i)/4 ; otherwise}

Stopping criteria

number of generations, track progress,
availability of computational resources, etc.

Checkboard example

x We are given an n by n checkboard in which every field
can have a different colour from a set of four colors.

¢ Goalis to achieve a checkboard in a way that there are
no neighbours with the same color (not diagonal)

Checkboard example Cont'd

¢ Chromosomes represent the way the checkboard is colored.

x Chromosomes are not represented by bitstrings but by
bitmatrices

¢ The bits in the bitmatrix can have one of the four valueso, 1, 2 or
3, depending on the color.

¢ Crossover involves matrix manipulation instead of point wise
operating.

¢ Crossover can combine the parential matrices in a horizontal,
vertical, triangular or square way.

\Y4
I\

Mutation remains bitwise - changing bits

I\

Fitness function: check 2n(n-1) violations

\7

Checkboard example Cont'd

e Fitness curves for different cross-over rules:

Fitness

Fitness

180+
170 -

160
|

150

140 |-

130+
0

180 ¢
170 -
160 |-
150 - /|

140 -

Lower-Triangular Crossing Over

{

Mm[il W (f

500

200

400
Generations

600

800

180

170 -
160 -
150 ; /

140 -/

180

170

160 [

150

140

130
0

130 *
0

Square Crossing Over

200

400 600

Verical Cutting Crossing Over

800

M (M(U

WRWMMNWMWJMMWWW

500 1000
Generations

1500

Why genetic algorithms work?

#* building blocks hypothesis
#* ... is controversial (mutations)

sampling based hypothesis

Parameters of GA

Encoding (into fixed length strings)

Length of the strings;

Size of the population;

Selection method;

Probability of performing crossover (p_);
Probability of performing mutation (p,,);

Termination criteria (e.g., a number of generations, a
leaderboard mutability, a target fitness).

Usual settings of GA parameters

Population size: from 20-50 to a few thousands
individuals;

Crossover probability: high (around 0.9);

Mutation probability: low (below 0.1).

*

Demo:
a biomorph

A biomorph is a graphic configuration generated from nine genes.
The first eight genes each encode a length and a direction.
The ninth gene encodes the depth of branching.

Each gene is encoded with five bits.

% The four first bits represent the value, the fifth its sign.

% Each gene can get a value from -15 to +15.

¢ value of gen nine is limited to 2-9.

There are : 8 (number of possible depths) x 24° (the 8 * 5 =40 bits encoding basic genes) =
8.8 x10*2 possible biomorphs. If we were able to test 1000 genomes every second, we would
need about 280 years to complete the whole search.

At the beginning, the drawing algorithm being known, we get the image of a biomorph.
The only informations directly measurable are the positions of branching points and their
number. The basic algorithm simulates the collecting of these informations.

Fitness function: the distance of the generated biomorph from the target one.

http://www.rennard.org/alife/english/gavgb.html

Applications

optimization

scheduling

#* bioinformatics,
machine learning
#* planning

multicriteria optimization

Where to use evolutionary algorithms?

Many local extremes

#* Just fitness, without derivations
No specialized methods

Multiobjective optimization

Robustness

Combined approaches

Multiobjective optimization

Fitness function with several objectives

Cost, energy, environmental impact, social
acceptability, human friendliness

min F(x)=min (f,(x), f,(x), ..., T.(X))

Pareto optimal solution: we cannot improve one
criteria without getting worse on others

GA: inreproduction, use all criteria

An example:
smart buildings

simple scenario: heater, accumulator, solar
panels, electricity from grid

#* criteria: price, comfort of users (as the difference
in temperature to the desired one)

chromosome: shall encode schedule of charging
and discharging the battery, heating on/off

operational time is discretized to 15min intervals

Control problem for smart buildings

Parameters:

* the price of energy from the grid varies during the
day

* the prediction of solar activity

* schedule of heater and battey

* usual activities of a user

Veckriterijski
evolucijski
algoritem
+
simulator

Neudobje

Smart building: structure of the
chromosome

temperature: for each interval we set the desired
temperature between Tmin and Tmax interval

battery+: if photovoltaic panels produce enough
energy we set: 1 charging, o no charging

battery-: if photovoltaic panels do not produce
enough energy, we set: 1 battery shall discharge,
o battery is not used

appliances: each has its schedule when it is used
(1) and when it is off (0)

Podanatemperatura

Enzrgijat

Erergija

Porabniki

Example of schedule

35

30

25

20

15

=

5

o

15 17 21 25

29 33

T

41

45 49

33

57 61 65 6% 73 77 Bl B3 8% 33 97T 101 105 109 113 117 121 125 12% 135 137 141 145 129 135 157 161 165 169 173 177 151 185 1B8%

Example of solutions and optimal front

2.22 + Vsi generirani
vrnjeni
2.2 » zacetni
» prvotna generacija
2.18
2 2.16
w]
Q
3 1"
Q
= 2.14 * o
L]
L
™ s Yo L]
212 *
*

-0.03 002 001 0 oot StroSki goz 0.03 0.04 0.05 0.06

Toolboxes and libraries

#* Cllib — computational intelligence library
EO (C++) - evolutionary computation library

ECF- Evolutionary Computation Framework
(C++)

ECJ, EVA2, JAGA (Java)
R: Rfreak, ppso, numDeriv, etc

#* Matlab

Pros and Cons of GA

Pros

x Faster (and lower memory requirements) than searching a very
large search space.

¢ Easy, in that if your candidate representation and fitness function
are correct, a solution can be found without any explicit analytical
work.

Cons
% Randomized — not optimal or even complete.

% Can get stuck on local maxima, though crossover can help
mitigate this.

¢ It can be hard to work out how best to represent a candidate as a
bit string (or otherwise).

56

Strengths and weaknesses

robust, adaptable, general

requires only weak knowledge of the problem
(fitness function and representation of genes)

several alternative solutions

hybridization and parallelization

suboptimal solutions
#* possibly many parameters
computationally expensive

#* no-free-lunch theorem

Genetic programming

Functions, programs, expression trees
#* Keep the structures valid
Tree crossover, type closure

#* Applications

GP quick overview
Developed: USA in the 1990's

Early names: J. Koza

Typically applied to:

¢ machine learning tasks (prediction, classification...)
xx controller design

x function fitting

Attributed features:

¢ competes with neural nets and alike

% needs huge populations (thousands)

¢ slow

Special:

X non-linear chromosomes: trees, graphs

3¢ mutation possible but not necessary (disputed!)

large potential, but so far did not deliver much

GP technical summary table

Representation

Tree structures

Recombination

Exchange of subtrees

Mutation

Random change in trees

Parent selection

Fitness proportional

Survivor selection

Generational replacement

Introductory example:
credit scoring with interpretable rules

Bank wants to distinguish good from bad loan
applicants

Model needed that matches historical data

ID-1 2 45000 Married 0

ID-2 0 30000 Single 1

ID-3 1 40000 | Divorced 1

Introductory example:
credit scoring

#* A possible model:
IF (NOC =2) AND (S > 80000) THEN good ELSE bad
#* |n general:
IF formula THEN good ELSE bad
Only unknown is the right formula, hence
Our search space (phenotypes) is the set of formulas

Natural fitness of a formula: percentage of well classified
cases of the model it stands for

Natural representation of formulas (genotypes) is parse trees

Introductory example:
credit scoring

IF (NOC =2)AND (S > 80000) THEN good ELSE bad

can be represented by the following tree

NOC 2 S 80000

Tree based representation

#* Trees are a universal form, e.g. consider

2-7z+((x+3)—53:1j

Arithmetic formula

| ogical formula (xAtrue) > (X Vy) Vv (Z & (xAY))

| =1;
while (i < 20)
#* Program { o
I=1+1

}

Tree based representation

A 2-7z+((x+3)—5§:1j
AN A /
2

A”/\
A

Tree based representation

/\ (xAtrue) > ((XVYy)Vv(ze>(XAY)))

Tree based representation

/:\ while
SN
il 20 1 T

Tree based representation

|In GA chromosomes are linear structures (bit
strings, integer string, real-valued vectors,
permutations)

Tree shaped chromosomes are non-linear
structures

|n GA the size of the chromosomes is fixed

#* Trees in GP may vary in depth and width

Tree based representation

Symbolic expressions can be defined by
¢ TerminalsetT

¢ Function set F (with the arities of function symbols)

Adopting the following general recursive definition:
1. Everyt eTisacorrect expression

.. f(e, ..., e, isacorrect expressionif f € F, arity(f)=nande,, ..., e, are
correct expressions

3. There are no other forms of correct expressions

|n general, expressions in GP are not typed (closure
property: any f € F can take any g € F as argument)

Offspring creation scheme

Compare

GA scheme using crossover AND mutation
sequentially (be it probabilistically)

GP scheme using crossover OR mutation (chosen
probabilistically)

Mutation

Most common mutation: replace randomly
chosen subtree by randomly generated tree

= +

A A

2 VN 2 NN

2

N\

5 1

Mutation cont’d

Mutation has two parameters:

x Probability p., to choose mutation vs. recombination

X Probability to chose an internal point as the root of the
subtree to be replaced

Remarkably p,, is advised to be o (Koza'g2) or
very small, like 0.05 (Banzhaf et al. 'g8)

The size of the child can exceed the size of the
parent

Recombination

Most common recombination: exchange two
randomly chosen subtrees among the parents

Recombination has two parameters:

% Probability p_to choose recombination vs. mutation

A\
¢ Probability to chose an internal point within each
parent as crossover point

The size of offspring can exceed that of the
parents

|

A

VANV

2

N
X 2 % +

/N

Parent 1

7%/\
X 3 a 3

Child 1

AN

5 1 Y 12

Child 2

Selection

Parent selection typically fitness proportionate

Over-selection in very large populations

x rank population by fitness and divide it into two groups:

X group 1: best x% of population, group 2 other (100-x)%

X 80% of selection operations chooses from group 1, 20% from group 2
¢ for pop. size =1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%

¢ motivation: to increase efficiency, %'s come from rule of thumb

#* Survivor selection:

\Y4
I\

Typical: generational scheme (thus none)

Recently steady-state is becoming popular for its elitism

\7
I\

Initialisation

Maximum initial depth of trees D, _, is set

Full method (each branch has depth=D__,):
% nodes at depthd <D, randomly chosen from function set F

x nodes at depthd =D, randomly chosen from terminal setT

Grow method (each branch hasdepth<D__,):
% nodes atdepthd <D, randomly chosen fromFUT

% nodes atdepthd =D, randomly chosen fromT

Common GP initialisation: ramped half-and-half, where grow
& full method each deliver half of the initial population

Bloat

A common GP problem

Bloat = "survival of the fattest”, i.e. the tree sizes
in the population are increasing over time

Debate about the reasons

Needs countermeasures, e.qg.,

x Prohibiting variation operators that would deliver “too
big” children

x Parsimony pressure: penalty for being oversized

Problems involving “physical”
environments

Trees for data fitting vs. trees (programs) that are “really”
executable

Execution can change the environment = the calculation
of fitness

Example: robot controller

Fitness calculations mostly by simulation, ranging from
expensive to extremely expensive (in time)

But evolved controllers are often very good

Example application:
symbolic regression

Given some pointsinR?, (x, v,), ..., (X, ¥,)
Find functionf(x) s.t. Vi=1, ..., n: f(x) =y,
Possible GP solution:
X Representation by F = {+, -, /, sin, cos}, T=R U {x}
x Fitnessisthe error err(f) :Zn:(f(xi)_yi)z
¢ All operators standard .
X pop.size = 1000, ramped half-half initialisation

X Termination: n “hits” or 5oooo fitness evaluations reached (where
“hit” is if | f(x.) —y,| < 0.0001)

Discussion

s GP:

The art of evolving computer programs ?
Means to automated programming of computers?

GA with another representation?

Nowadays, language models are replacing GP for
program generation (to be discussed in the NLP
topic)

Neuroevolution: evolving neural
networks

* Evolving neurons and/or topologies

fitness

Genetic

S e
-

. W m ¥
'-".-I' 1." o h’ *f
!\ ‘;. " -.l"'. '.‘,r‘f -1‘-\' "
. &]
&_“! .—
*,‘ ' -
¢« Environment
3 L)
a [)
~-. . 5
" - e
i - L a .". '
.o i a‘h'l‘ J‘-’.lg‘-'ﬁ‘ ."r-'-‘\
f‘ 1
» -
s action
observation

MNeural Networlk

Neuroevolution

Evolving neurons: not really necessary but
attempted

Evolving weights instead of backpropagation and
gradient descent

Evolving the architecture of neural network

% For small nets, one uses a simple matrix representing which
neuron connects which.

x This matrix s, in turn, converted into the necessary 'genes’,
and various combinations of these are evolved.

Example: multialphabet character
recognition architrectures

Latin Tifinagh Greek Mongolian Futurama Aramaic

Angelic Sanskrit Keble Cyrillic Malay Japanese Balinese Qjibwe

© Sentient Technologies

https://evolution.ml/demos/cmsr/

next
generation

yes

i = population size ?

v No

select two
individuals

v

perform crossover
with prolbability o

v

perform mutation
with probability o

v

add offspring to
infermediate pool

v

=1+ 2

GA flowchart

next yes

generation

i = population size ? <

¥ NO

select variation op.
probabilistically

mutation /\ crossover

select one select two
individual individuals
perform mutation perform crossover
\ 4 \ 4
add offspring to add offspring to
intermediate pool intermediate pool
i=i+1 i=i+ 2

GP flowchart

Template of evolutionary program

generate a population of agents (objects, data structures)

do §

compute fitness (quality) of the agents

select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

immensely general -> many variants

