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Evolutionary and natural computation

# Many engineering and computational ideas from nature work
fantastically!

Evolution as an algorithm

Abstraction of the idea:

*

X progress, adaptation - learning, optimization

Survival of the fittest - competition of agents, programs, solutions
Populations — parallelization

(Over)specialization — local extremes

Neuro-evolution, evolution of robots, evolution of novelty

* = X % »

revival of interest



Template of evolutionary program

generate a population of agents (objects, data structures)

do §

compute fitness (quality) of the agents

select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

# immensely general -> many variants



A result of successful evolutionary
program

Solution Solution
Quality Quality
Search Space Search Space
a. The beginning search space b. The search space after

n generations



Main approaches

#* Genetic algorithms

# Genetic programming

# Swarm methods (particles, ants, bees, ...)
# Self-organized fields

# Differential evolution

* etc.



Genetic Algorithms - History

# Pioneered by John Holland in the 1970’s
# Got popularin the late 1980's
# Based on ideas from Darwinian evolution

# Can be used to solve a variety of problems that
are not easy to solve using other techniques
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Evolution in the real world

# Each cell of a living thing contains chromosomes - strings of DNA
# Each chromosome contains a set of genes - blocks of DNA

*» Ealch g)ene determines some aspect of the organism (like eye
colour

# A collection of genes is sometimes called a genotype

#* A collection of aspects (like eye colour) is sometimes called a
phenotype

# Reproduction involves recombination of genes from parents and
then small amounts of mutation (errors) in copying

* '(Ij'_hefitness of an organism is how much it can reproduce before it
ies

# Evolution based on “survival of the fittest”

#* Disputed notion, e.g., co-evolution, ecosystem view



Genotype and Phenotype

#* Genotype:

— Particular set of genes in a genome

#* Phenotype:

— Physical characteristic of the genotype (smart,
beautiful, healthy, etc.)



Genotype and Phenotype
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Key terms

# Individual - Any possible solution

# Population - Group of all individuals

# Search Space - All possible solutions to the problem
# Chromosome - Blueprint for an individual

# Trait - Possible aspect (features) of an individual

# Allele - Possible settings of trait (black, blond, etc.)
# Locus - The position of a gene on the chromosome

# Genome - Collection of all chromosomes for an
individual



Biological equivalents

# Evolution is a variation of alleles frequencies
through time.

# Reproduction, variation (mutation, crossover),
selection



Evolutionary computation keywords

Representation: data structures, operations

-itness, heuristics

* * *®

Population variability

# Local and global extremes
# Coevolution

# Variability of fitness function



A fitness function
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Gene representation

#* Bit vector

# Numeric vectors

#* 5trings

# Permutations

#* Trees: functions, expressions, programs

* .



Crossover

#* Single point/multipoint

# Shall preserve individual objects



Crossover: bit representation

Parents: 1101011100 0111000101

Children: 1101010101 0111001100



Crossover: vector representation

Simplest form
Parents: (6.13, 4.89, 17.6, 8.2) (5.3, 22.9, 28.0, 3.9)
Children: (6.13, 22.9, 28.0, 3.9) (5.3, 4.89, 17.6, 8.2)

In reality: linear combination of parents



Linear crossover

# The linear crossover simply takes a linear
combination of the two individuals.

#* Letx=(x,..xy)and y =(y,...yn)
# Select a in (o, 1)
# The results of the crossoveris a x + (1- a)y .

# Possible variation: choose a different a for each
position.



Linear crossover example

#* Let o = 0.75 and we have this two individuals:
A=(51,2,10)and B=(2, 8, 4, 5)
# then the result of the crossover is:

(3.75+0.5,0.75+ 2, 1.5+ 1, 7.5 + 1.25) = (4.25, 2.75,2.5, 8.75)

#* If we use the variation and we have a = (0.5, 0.25, 0.75,
0.5), the result is:

(2.5+1,0.25+6,1.5+1, 5+ 2.5) =(3.5, 6.25, 2.5, 7.5)



Crossover: trees




Permutations: travelling salesman
oroblem

#* gcCities: 1,2 ..9
#* bit representation using 4 bits?

¢ 00010010 0011 0100 0101 0110 01111000 1001

\7

¢ crossover would give invalid genes

\7

# permutation and ordered crossover

\7
I\

keep (part of) sequences

\7

¢ use the sequence from second cut, keep already existing
192[4657[83 2> xxx|4657[xx ¥ 239|4657[18
459187623 =2 xxx|1876 |xx 41 392|1876]45



A demo: Eaters

*

Plant eaters are simple organisms, moving around in a
simulated world and eating plants

# Fitness function: number of plants eaten

:

* * % »

An eater sees one square in front of its pointed end; it sees 4
possible things: another eater, plant, empty square or the wall

Actions: move forward, move backward, turn left, turn right
It is not allowed to move into the wall or another eater
Internal state: number between o and 15

The behavior is determined by the 64 rules encoded in its
chromosome; one rule for each of 16 states x 4 observations;
one rule is a pair (action, next state)

The chromosome therefore consists of length 64 x (4+2) bits =
384 bits

Crossover and mutation


https://math.hws.edu/eck/js/genetic-algorithm/GA.html

Gray coding of binary numbers

# Keeping similarity

Binary Gray
0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100
1000 1100
1001 1101
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001

1111

1000



Adaptive crossover

# Different evolution phases
# Crossover templates
# 0 —first parent, 1 second parent

# Possibly different dynamics of template

Gene Template

Parent 1{1.23.45.6 4.5 7.9 6.8 010101
Parent 2(4.7 2.31.6 3.26.4 7.7 100

0111
Child 1 (1.2 2.35.63.27.9 7.7 010100
Child 2 (4.7 3.4 1.6 4.5 6.4 6.8 011101




Mutation

# Adding new information

# Binary representation:
0111001100 --> 0011001100

# Single point/multipoint
# Random search?

# amarckian (searching for locally best mutation)



Lamarckism is the hypothesis that an organism can
pass on characteristics that it has acquired through

La Marc kl dNISM  yse or disuse during its lifetime to its offspring.

An Early Proposal of Evolution: Theory of Acquired Characteristics

LAMARCK'S GIRAFFE and stretching
until neck
becomes
Keeps stretching and progressively
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Driven by inner “need”

Jean Baptiste Lamarck (~ 1800) : Theory of Acquired Characteristics
* Use and disuse alter shape and form in an animal

* Changes wrought by use and disuse are heritable

* Explained how a horse-like animal evolved into a giraffe



Gaussian mutation

# \When mutating one gene, selecting the new
value by choosing uniformly among all the
possible values is not the best choice
(empirically).

# The mutation selects a position in the vector of
floats and mutates it by adding a Gaussian error:
a value extracted according to a normal
distribution with the mean o and certain variance
depending on the problem.



Template of evolutionary program

generate a population of agents (objects, data structures)

do §

compute fitness (quality) of the agents

select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

# immensely general -> many variants



Evolutional model - who will reproduce

#* Keeping the good
# Prevent premature convergence

# Assure heterogeneity of population



Selection

# Proportional
# Rank proportional
#* Tournament
# Single tournament

» Stochastic
universal sampling

selection
point

the roulette wheel

aneel is rotate,,

Weakest individual

$ == has smallest share of
the roulette wheel



Tournament selection

1. set t=size of the tournament,

p=probability of a choice

2. randomly sample t agents from population
forming a tournament

3. Se

4. Se

ect the best with probability p
ect second best with probability p(2-p)
ect third best with probability p(1-p)?



Stochastic universal sampling (SUS)
#* unbiased

# selecting N agents

# randomly chosen first position r € [0, F/N]

# selected positionsr +i*F/N, i € o, 1,..., N-1]

determine chosen agents

[.J Total Hiness = I7

A B c D E

e <

FiN

S,

€ [0, F/N)




Replacement

* All

# According to the fitness (roulette, rang,
tournament, randomly)

# Elitism (keep a portion of the best)

# Local elitism (children replace parents if they are
better)



Single tournament selection

1. randomly split the population into small groups

2. apply crossover to two best agents from each
roup, their offspring replace two worst agents
rom the group

# advantage: in groups of size g the best g-2 progress
to next generation (we do not use good agents,
maximal quality does not decrease)

# no matter the quality even the best agents have no
more than two offspring (we do not loose
population diversity)

# computational load?



Population size

#* small, large?



Niche specialization

#* evolutionary niches are generally undesired

# punish too similar agents

f'. =1 /q(r,i)

q(ri)={1 ; sim(i) <=4,
sim(i)/4 ; otherwise}



Stopping criteria

# number of generations, track progress,
availability of computational resources, etc.



Checkboard example

x We are given an n by n checkboard in which every field
can have a different colour from a set of four colors.

¢ Goalis to achieve a checkboard in a way that there are
no neighbours with the same color (not diagonal)




Checkboard example Cont'd

¢ Chromosomes represent the way the checkboard is colored.

x Chromosomes are not represented by bitstrings but by
bitmatrices

¢ The bits in the bitmatrix can have one of the four valueso, 1, 2 or
3, depending on the color.

¢ Crossover involves matrix manipulation instead of point wise
operating.

¢ Crossover can combine the parential matrices in a horizontal,
vertical, triangular or square way.

\Y4
I\

Mutation remains bitwise - changing bits

I\

Fitness function: check 2n(n-1) violations

\7



Checkboard example Cont'd

e Fitness curves for different cross-over rules:

Fitness
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Why genetic algorithms work?

#* building blocks hypothesis
#* ... is controversial (mutations)

# sampling based hypothesis



Parameters of GA

# Encoding (into fixed length strings)

# Length of the strings;

# Size of the population;

# Selection method;

# Probability of performing crossover (p_ );
# Probability of performing mutation (p,,);

# Termination criteria (e.g., a number of generations, a
leaderboard mutability, a target fitness).



Usual settings of GA parameters

# Population size: from 20-50 to a few thousands
individuals;

# Crossover probability: high (around 0.9);

# Mutation probability: low (below 0.1).



*

Demo:
a biomorph

A biomorph is a graphic configuration generated from nine genes.
The first eight genes each encode a length and a direction.
The ninth gene encodes the depth of branching.

Each gene is encoded with five bits.

% The four first bits represent the value, the fifth its sign.

% Each gene can get a value from -15 to +15.

¢ value of gen nine is limited to 2-9.

There are : 8 (number of possible depths) x 24° (the 8 * 5 =40 bits encoding basic genes) =
8.8 x10*2 possible biomorphs. If we were able to test 1000 genomes every second, we would
need about 280 years to complete the whole search.

At the beginning, the drawing algorithm being known, we get the image of a biomorph.
The only informations directly measurable are the positions of branching points and their
number. The basic algorithm simulates the collecting of these informations.

Fitness function: the distance of the generated biomorph from the target one.


http://www.rennard.org/alife/english/gavgb.html

Applications

# optimization

# scheduling

#* bioinformatics,
# machine learning
#* planning

# multicriteria optimization



Where to use evolutionary algorithms?

# Many local extremes

#* Just fitness, without derivations
# No specialized methods

# Multiobjective optimization

# Robustness

# Combined approaches



Multiobjective optimization

# Fitness function with several objectives

# Cost, energy, environmental impact, social
acceptability, human friendliness

# min F(x)=min (f,(x), f,(x), ..., T.(X))

# Pareto optimal solution: we cannot improve one
criteria without getting worse on others

# GA: inreproduction, use all criteria



An example:
smart buildings

# simple scenario: heater, accumulator, solar
panels, electricity from grid

#* criteria: price, comfort of users (as the difference
in temperature to the desired one)

# chromosome: shall encode schedule of charging
and discharging the battery, heating on/off

# operational time is discretized to 15min intervals



Control problem for smart buildings

Parameters:

* the price of energy from the grid varies during the
day

* the prediction of solar activity

* schedule of heater and battey

* usual activities of a user

Veckriterijski
evolucijski
algoritem
+
simulator

Neudobje




Smart building: structure of the
chromosome

# temperature: for each interval we set the desired
temperature between Tmin and Tmax interval

# battery+: if photovoltaic panels produce enough
energy we set: 1 charging, o no charging

# battery-: if photovoltaic panels do not produce
enough energy, we set: 1 battery shall discharge,
o battery is not used

# appliances: each has its schedule when it is used
(1) and when it is off (0)



Podanatemperatura

Enzrgijat

Erergija

Porabniki

Example of schedule
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Example of solutions and optimal front

2.22 + Vsi generirani
vrnjeni
2.2 » zacetni
» prvotna generacija
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Toolboxes and libraries

#* Cllib — computational intelligence library
# EO (C++) - evolutionary computation library

# ECF- Evolutionary Computation Framework
(C++)

# ECJ, EVA2, JAGA (Java)
# R: Rfreak, ppso, numDeriv, etc

#* Matlab



Pros and Cons of GA

# Pros

x Faster (and lower memory requirements) than searching a very
large search space.

¢ Easy, in that if your candidate representation and fitness function
are correct, a solution can be found without any explicit analytical
work.

# Cons
% Randomized — not optimal or even complete.

% Can get stuck on local maxima, though crossover can help
mitigate this.

¢ It can be hard to work out how best to represent a candidate as a
bit string (or otherwise).

56



Strengths and weaknesses

# robust, adaptable, general

# requires only weak knowledge of the problem
(fitness function and representation of genes)

# several alternative solutions

# hybridization and parallelization

# suboptimal solutions
#* possibly many parameters
# computationally expensive

#* no-free-lunch theorem



Genetic programming

# Functions, programs, expression trees
#* Keep the structures valid
# Tree crossover, type closure

#* Applications



GP quick overview
Developed: USA in the 1990's

Early names: J. Koza

Typically applied to:

¢ machine learning tasks (prediction, classification...)
xx controller design

x function fitting

Attributed features:

¢ competes with neural nets and alike

% needs huge populations (thousands)

¢ slow

Special:

X non-linear chromosomes: trees, graphs

3¢ mutation possible but not necessary (disputed!)

large potential, but so far did not deliver much



GP technical summary table

Representation

Tree structures

Recombination

Exchange of subtrees

Mutation

Random change in trees

Parent selection

Fitness proportional

Survivor selection

Generational replacement




Introductory example:
credit scoring with interpretable rules

# Bank wants to distinguish good from bad loan
applicants

# Model needed that matches historical data

ID-1 2 45000 Married 0

ID-2 0 30000 Single 1

ID-3 1 40000 | Divorced 1




Introductory example:
credit scoring

#* A possible model:
IF (NOC =2) AND (S > 80000) THEN good ELSE bad
#* |n general:
IF formula THEN good ELSE bad
# Only unknown is the right formula, hence
# Our search space (phenotypes) is the set of formulas

# Natural fitness of a formula: percentage of well classified
cases of the model it stands for

# Natural representation of formulas (genotypes) is parse trees



Introductory example:
credit scoring

IF (NOC =2)AND (S > 80000) THEN good ELSE bad

can be represented by the following tree

NOC 2 S 80000



Tree based representation

#* Trees are a universal form, e.g. consider

2-7z+((x+3)—53:1j

# Arithmetic formula

# | ogical formula (xAtrue) > (X Vy) Vv (Z & (xAY))

| =1;
while (i < 20)
#* Program { o
I=1+1

}



Tree based representation

A 2-7z+((x+3)—5§:1j
AN A /
2

A”/\
A



Tree based representation

/\ (xAtrue) > ((XVYy)Vv(ze>(XAY)))



Tree based representation

/:\ while
SN
il 20 1 T



Tree based representation

# |In GA chromosomes are linear structures (bit
strings, integer string, real-valued vectors,
permutations)

# Tree shaped chromosomes are non-linear
structures

# |n GA the size of the chromosomes is fixed

#* Trees in GP may vary in depth and width



Tree based representation

# Symbolic expressions can be defined by
¢ TerminalsetT

¢ Function set F (with the arities of function symbols)

# Adopting the following general recursive definition:
1. Everyt eTisacorrect expression

.. f(e, ..., e, isacorrect expressionif f € F, arity(f)=nande,, ..., e, are
correct expressions

3. There are no other forms of correct expressions

# |n general, expressions in GP are not typed (closure
property: any f € F can take any g € F as argument)



Offspring creation scheme

Compare

# GA scheme using crossover AND mutation
sequentially (be it probabilistically)

# GP scheme using crossover OR mutation (chosen
probabilistically)



Mutation

# Most common mutation: replace randomly
chosen subtree by randomly generated tree
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Mutation cont’d

# Mutation has two parameters:

x Probability p., to choose mutation vs. recombination

X Probability to chose an internal point as the root of the
subtree to be replaced

# Remarkably p,, is advised to be o (Koza'g2) or
very small, like 0.05 (Banzhaf et al. 'g8)

# The size of the child can exceed the size of the
parent



Recombination

# Most common recombination: exchange two
randomly chosen subtrees among the parents

# Recombination has two parameters:

% Probability p_to choose recombination vs. mutation

A\
¢ Probability to chose an internal point within each
parent as crossover point

# The size of offspring can exceed that of the
parents
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Selection

# Parent selection typically fitness proportionate

# Over-selection in very large populations

x rank population by fitness and divide it into two groups:

X group 1: best x% of population, group 2 other (100-x)%

X 80% of selection operations chooses from group 1, 20% from group 2
¢ for pop. size =1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%

¢ motivation: to increase efficiency, %'s come from rule of thumb

#* Survivor selection:

\Y4
I\

Typical: generational scheme (thus none)

Recently steady-state is becoming popular for its elitism

\7
I\



Initialisation

# Maximum initial depth of trees D, _, is set

# Full method (each branch has depth=D__,):
% nodes at depthd <D, randomly chosen from function set F

x nodes at depthd =D, randomly chosen from terminal setT

# Grow method (each branch hasdepth<D__,):
% nodes atdepthd <D, randomly chosen fromFUT

% nodes atdepthd =D, randomly chosen fromT

# Common GP initialisation: ramped half-and-half, where grow
& full method each deliver half of the initial population



Bloat

# A common GP problem

# Bloat = "survival of the fattest”, i.e. the tree sizes
in the population are increasing over time

# Debate about the reasons

# Needs countermeasures, e.qg.,

x Prohibiting variation operators that would deliver “too
big” children

x Parsimony pressure: penalty for being oversized



Problems involving “physical”
environments

# Trees for data fitting vs. trees (programs) that are “really”
executable

# Execution can change the environment = the calculation
of fitness

# Example: robot controller

# Fitness calculations mostly by simulation, ranging from
expensive to extremely expensive (in time)

# But evolved controllers are often very good



Example application:
symbolic regression

# Given some pointsinR?, (x, v,), ..., (X, ¥,)
# Find functionf(x) s.t. Vi=1, ..., n: f(x) =y,
# Possible GP solution:
X Representation by F = {+, -, /, sin, cos}, T=R U {x}
x Fitnessisthe error err(f) :Zn:(f(xi)_yi)z
¢ All operators standard .
X pop.size = 1000, ramped half-half initialisation

X Termination: n “hits” or 5oooo fitness evaluations reached (where
“hit” is if | f(x.) —y,| < 0.0001)



Discussion

s GP:

The art of evolving computer programs ?
Means to automated programming of computers?

GA with another representation?

Nowadays, language models are replacing GP for
program generation (to be discussed in the NLP
topic)



Neuroevolution: evolving neural
networks

* Evolving neurons and/or topologies
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Neuroevolution

# Evolving neurons: not really necessary but
attempted

# Evolving weights instead of backpropagation and
gradient descent

# Evolving the architecture of neural network

% For small nets, one uses a simple matrix representing which
neuron connects which.

x This matrix s, in turn, converted into the necessary 'genes’,
and various combinations of these are evolved.



Example: multialphabet character
recognition architrectures

Latin Tifinagh Greek Mongolian Futurama Aramaic

Angelic Sanskrit Keble Cyrillic Malay Japanese Balinese Qjibwe

© Sentient Technologies

https://evolution.ml/demos/cmsr/
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Template of evolutionary program

generate a population of agents (objects, data structures)

do §

compute fitness (quality) of the agents

select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

# immensely general -> many variants



