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Lecturer
• Prof Dr Marko Robnik-Šikonja

• University of Ljubljana
Faculty of Computer and Information Science
Head of Laboratory for Cognitive Modeling

• FRI, Večna pot 113, 2nd floor, toom 2.06, to the right from the elevator

• marko.robnik@fri.uni-lj.si

• https://fri.uni-lj.si/en/employees/marko-robnik-sikonja

• X: @MarkoRobnikS

• (01) 4798 241

• Contact hours (see the webpage)

• currently, Wednesdays, 10:00 - 11:00; email me for other times or video connection

• Research interests: artificial intelligence, machine learning, natural language processing, network analytics, data 
science, data mining, algorithms and data structures

• Teaching: courses from areas of machine learning, natural language processing, and algorithms

• Software and resources: supporting open science, author of three open source R packages from the area of 
predictive modelling and data analytics (CORElearn, semiArtificial, ExplainPrediction), many neural prediction 
models, and language resources 2
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Assistants

• Dr Tadej Škvorc

• Aleš Žagar, PhD student

• Boshko Koloski, PhD student

• tutorials, assignments, work in Python
please, prepare questions!
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Syllabus
• nature inspired computing (genetic algorithms, genetic programming)

• basics of machine learning,

• bias, variance, generalization error, and overfitting

• representation learning and feature selection

• neural networks

• natural language processing

• ensemble methods

• kernel methods

• model inference and explanation

• reinforcement learning
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Objectives
• students shall become acquainted with 

• nature inspired computing
• machine learning

• model selection and evaluation techniques
• model comprehensibility and explanation
• practical application of predictive modeling in R programming language and environment 

• natural language processing
• reinforcement learning

• practical use of theoretical knowledge on (almost) real-world problems 

• awareness of domain expertise and ethical issues in data science

• increase the (mental) problem-solving toolbox with 
• predictive modeling techniques 
• evolutionary optimization approaches
• large language models
• reinforcement learning
• experiment design, result understanding, visualization, and explanation approaches

• for a given prediction problem students shall be able to
• transform it to a form suitable for predictive modeling
• select and train an appropriate predictive model
• evaluate the model and present the results in a comprehensible form and language.
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• difference between different types of machine 
learning models

• properties of models: bias, variance, 
generalization, hypothesis language

• properties of the following models: kNN, 
decision rules, bagging, boosting, random 
forests, stacking, SVM, neural networks

• properties and purpose of evaluation 
approaches and metrics: cross-validation, 
bootstrapping, ROC curves, sensitivity, 
specificity etc.

• inference methods for predictive methods and 
explanation of predictions

• when and why to apply reinfocement learning

• how to prepare and process text

• when and how and to optimize a problem using
evolutionary algorithms

• visualize datasets and created models

• prepare data into a suitable form for 
modeling algorithms

• apply classification and regression models 
to solve a prediction task with a given data 
set 

• build natural language classifier

• estimate error of models using statistically 
valid approaches 

• select models and tune their parameters 
using cross-validation and bootstrapping

• visualize models and explain their 
predictions

• given a new dataset, select an appropriate 
modeling technique and evaluate the 
created model
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Be able to explain
Build and evaluate models in Python



Syllabus explained
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Nature inspired computing

• genetic algorithms

• genetic programming

• neuro-evolution
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Introduction to statistical predictive modelling 

• Learning as modelling: data, evidence, background knowledge, 
predictive models, hypotheses, learning as optimization, learning as 
search, criteria of success, inductive learning, generalization.

• Classification and regression: supervised and unsupervised learning, 
learning discrete and numeric functions, learning relations, learning 
associations.

• Simple classification models: nearest neighbor, decision rules
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Model selection 
• Bias and variance: error decomposition, trade-off, estimating bias and 

variance

• Generalization performance: training and testing set error, cross-
validation, evaluation set, bootstrapping.

• Performance measures: confusion matrix, sensitivity and specificity, 
ROC curves, AUC, cost-based classification.

• Parameter tuning: regularization, search

• Calibration of probabilities: binning, isotonic regression.

• No free lunch theorem.
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Ensemble methods 

• Model averaging, why ensembles work.

• Tree based ensembles: bagging, boosting, random forests.

• MARS and AODE ensembles.

• Stacking.
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Kernel methods

• SVM for classification and regression: kernels, support vectors, 
hyperplanes.

• SVM for more than two classes: one vs. one, one vs. all.
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Neural networks 

• perceptron, 

• backpropagation, 

• RBF networks, 

• setting structure of networks

• deep neural networks

• transformer architecture

• autoencoders

• GANs

• the role of embeddings
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Explaining prediction models 

• Model comprehensibility, visualization and knowledge discovery.

• General methodology for explaining predictive models.

• Model level and instance level explanations, methods SHAP, LIME, 
EXPLAIN, and IME.
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Learning with special settings

• imbalanced data, 

• multi-task learning, 

• multi-label learning,

• Etc.
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Reinforcement learning

• basics

• Markov decision problem

• Q learning

• Deep RL
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Natural language processing

• text preprocesing

• text representation

• text similarity

• text classification

• sentiment analysis



Course organisation
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Obligations

• 5 quizzes

• Two projects, 50 points

• Written exam, 50 points
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Grading

Obligation % of total subject to
Five quizzes 0% ≥ 50% alltogether
Projects 50% ≥ 50% each
Written exam 50% ≥ 50%
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Learning materials

• learning materials in eClassroom

• slides

• links to textbooks and papers

• Python notebooks with examples

• links to data sets
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Readings
James, G., Witten, D., Hastie, T., Tibshirani, R. and Taylor, J., 2023. An Introduction to 
Statistical Learning: With Applications in Python. New York: Springer. Freely available at 
https://www.statlearning.com/ (the same book exists for R)

Further readings:

• Friedman, J., Hastie, T., & Tibshirani, R., 2009). The elements of statistical learning, 2nd

edition. Springer, Berlin, freely available from 
https://web.stanford.edu/~hastie/ElemStatLearn/

• Jurafsky, Daniel and James, Martin (2023): Speech and Language Processing, 3rd 
edition in progres, freely available

• Richard S. Sutton and Andrew G. Barto: Reinforcement Learning, An Introduction, 2nd 
edition, MIT press, 2018, freely available

• Kononenko, I., Robnik-Šikonja, M.: Inteligentni sistemi. Založba FE in FRI, 2010 (in 
Slovene)

• scientific papers

• many excellent machine learning and data mining courses on Coursera and edX
23
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Retention of learning
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Data Science

• good job perspective

• many jobs in this area regularly occupy list of the most promising jobs 

• Thomas H. Davenport, D.J. Patil: Data Scientist: The Sexiest Job of the 21st 
Century. Harvard Business Review, October 2012
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Intelligent systems and media

Will robots destroy us?

Will they take our jobs?

Will we still need a driving licence?

Will we still need doctors?

How will humanoid robots evolve?

What about cyborgs?

What is artificial general intelligence?

What is technological singularity?
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New prophets of tehnological singularity
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Some scientific responses

• Rodney Brooks: The Seven Deadly Sins of Predicting the Future of AI. 
https://rodneybrooks.com/the-seven-deadly-sins-of-predicting-the-future-
of-ai/ also in MIT Technology Review

• Marko Robnik-Šikonja: Is artificial intelligence a (job) killer?. The
Conversation, Jul. 2017 https://theconversation.com/is-artificial-
intelligence-a-job-killer-80473

• …
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Short history of optimism 
• starting in 1950s,

1956 Dartmouth conference

• great expectations, enormous underestimation

of problem difficculty

• AI winter (2 x)

1958, H. A. Simon and Allen Newell: “… within ten years a digital computer will discover 
and prove an important new mathematical theorem.”

1965, H. A. Simon: “… machines will be capable, within twenty years, of doing any work a 
man can do.”

1967, Marvin Minsky: "Within a generation ... the problem of creating 'artificial 
intelligence' will substantially be solved.”

1970, Marvin Minsky: "In from three to eight years we will have a machine with the 
general intelligence of an average human being."
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