
Computational topology
Homework 3 (due: January 19th 2024)

Each problem is worth a certain amount of points. The point assignment should somewhat reflect
the difficulty of the problem. Some problems are theoretical, others require you also submit the
code (that conforms to the requirements given in the problem description). You may choose
which problems to solve, 15 points is equal to 100%.

You have to submit your solutions before the deadline as one .zip file to the appropriate mailbox
at https://ucilnica.fri.uni-lj.si/course/view.php?id=111 (near the top of the page).

This .zip file should contain:

1. a namesurname.pdf file written in LATEX and containing the solutions to the theore-
tical problems you have chosen as well as solutions and explanations for the programming
problems (also make sure you sign your name on the top of the first page),

2. .py files containing the code (one for each of the programming problems you have chosen).

1 Theoretical problems
1. (3 points) Homology.

A simplicial complex X contains the following maximal simplices:

ADF,BEF,CD,CE,DE.

(a) Draw X as a planar 2-dimensional simplicial complex.
(b) Write down the chain groups Cn.
(c) Determine the boundary homomorphisms ∂n : Cn → Cn−1.
(d) Find the cycles Zn and boundaries Bn.
(e) Determine Hn(X;Z).
(f) Determine Hn(X;Z2).
(g) Determine the Betti numbers of X and compute the Euler characteristic of X.

2. (3 points) Discrete Morse Theory.
Recall that a torus T is obtained by gluing together the two pairs of opposite sides of the
square. Two possible triangulations of the torus are given below. Pick one to use for the
rest of this problem.

A A

AA

B

B

C

C

D

GG

DE F

H I

A A

AA

B

B

C

C

F F

G G
D

E

(a) Construct a Morse function F on T , draw the corresponding vector field and then cancel
all possible pairs of critical simplices to minimize the number of critical simplices. (Or
try drawing an optimal gradient vector field without constructing the function first.)

(b) Determine the number ci of critical simplices of dimension i and compute the Euler
characteristic χ(T).

(c) What are the Betti numbers of T with Z coefficients?

2 Programming problems

3. (3 points) Vietoris-Rips complex
The file rips.py should contain a function cliques(VG, EG) that finds all cliques in a
graph, which is given as a list of vertices and a list of edges (you can transform these two
into a more efficient data structure). It should also contain the function VR(S, epsilon)
that returns a dictionary where keys are the dimensions of simplices in the Vietoris-Rips
complex VRε(S) and values are lists of all simplices of corresponding dimension.
Sample input for VR(S, epsilon):

S = [(0, 0), (1, 1), (2, 3), (-1, 2), (3, -1), (4, 2)]
epsilon = 3

Sample output for VR(S, epsilon):

{0: [(0,), (1,), (2,), (3,), (4,), (5,)],
1: [(0, 1), (0, 3), (1, 2), (1, 3), (1, 4), (2, 5)],
2: [(0, 1, 3)]}

Make sure that cliques is at least somewhat efficient, ie. do not go through all 2|V G|
possible subsets of edges but try to limit your search as much as possible. Explain your
method in your report. Which test case will give you the worst possible run time? How
many vertices can your algorithm handle in 1 second or less in this worse-case scenario?
How many vertices can it handle in 10 seconds or less? What about 100 seconds?
Your report should include a few test cases for VR as well as a few separate test cases for
cliques. It is forbidden to use external library for Vietoris-Rips complex generation.

4. (3 points) Čech complex
The file cech.py should contain a function cech(S, epsilon) that returns a dictionary
where keys are the dimensions of simplices in the Čech complex Čε(S) and values are lists
of all simplices of corresponding dimension.
Sample input for cech(S, epsilon):

S = [(−2, 1), (−2, −2), (1, −1), (1.5, 2.5)]
epsilon = 2

Sample output for cech(S, epsilon):

{0: [(0,), (1,), (2,), (3,)],
1: [(0, 1), (0, 2), (0, 3), (1, 2), (2, 3)],
2: [(0, 1, 2)]}

You can use the code from the lab work to generate Vietoris-Rips complex and then use
the mini-ball algorithm to add simplices of higher dimensions.
Then download one of the point clouds available on http://graphics.stanford.edu/
data/3Dscanrep. They are stored in ply format that already contains surface reconstruction
which we do not need. Extract only the points from the downloaded file and create a Čech
complex on the subsample (choose it appropriately). Use the script on ucilnica to export
the obtained complex back into ply format and open it with a 3D editor (such as Blender).
Does it look similar to the image on the Stanford site?
Experiment with sample size and the radius used in the construction of the Čech complex
to obtain the best possible reconstruction (including an image of the complex would be
nice). Your report should include information on the best radius and subsample size (and
the method you used in order to obtain them) and the picture of your best reconstruction.

5. (3 points) Collapsibility
Write an algorithm that takes a simplicial complex given as a list of maximal simplices
(which are not necessarily all of the same dimension) and simplifies it by collapsing any free
faces.
Your file collapse.py should contain a function collapse(X, progress = True) that
returns the list of all simplices that are left after all possible collapses have been made. If
the optional parameter is True, it prints the progress report to the console. Here is the first
few lines of output for the cylinder:

Initial simplicial complex:
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (1, 5, 6), (1, 2, 6)]

Free faces:
[((1, 2, 3), (1, 3)), ((4, 5, 6), (4, 6)), ((1, 5, 6), (1, 5)),...]
Choose a simplex sigma with a free face tau:
sigma = (1, 2, 3)
tau = (1, 3)
Remaining simplices after the elementary collapse:
[(2, 3, 4), (3, 4, 5), (4, 5, 6), (1, 5, 6), (1, 2, 6)]
...

Run it for a 2-sphere, a cylinder, a Moebius strip and the Dunce hat given below. Did you
get the expected results?

http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
https://www.blender.org

S2 = [(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
C = [(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (1, 5, 6), (1, 2, 6)]
M = [(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (2, 5, 6), (1, 2, 6)]
D = [(1, 2, 5), (1, 5, 6), (1, 6, 7), (1, 2, 7), (1, 4, 9),

(1, 9, 10), (1, 10, 11), (1, 4, 11), (1, 2, 13), (1, 13, 14),
(1, 14, 15), (1, 4, 15), (2, 3, 5), (2, 3, 7), (3, 4, 9),
(3, 4, 11), (2, 3, 13), (3, 4, 15), (3, 7, 8), (3, 8, 9),
(3, 11, 12), (3, 12, 13), (3, 15, 16), (3, 5, 16),
(5, 6, 17), (5, 16, 17), (6, 7, 17), (7, 8, 17),
(8, 9, 17), (9, 10, 17), (10, 11, 17), (11, 12, 17),
(12, 13, 17), (13, 14, 17), (14, 15, 17), (15, 16, 17)]

Finally, try an example where maximal simplices have different dimensions.

X = [(1, 2, 3), (2, 3, 5), (3, 4), (5, 6)]

Include the sequence of collapses for X in your report and come up with a few more test
cases.

