
Computational topology
Homework 2 (due: December 3rd 2023)

Each problem is worth a certain amount of points. The point assignment should somewhat reflect
the difficulty of the problem. Some problems are theoretical, others require you also submit the
code (that conforms to the requirements given in the problem description). You may choose
which problems to solve, 15 points is equal to 100%.

You have to submit your solutions before the deadline as one .zip file to the appropriate mailbox
at https://ucilnica.fri.uni-lj.si/course/view.php?id=111 (near the top of the page).

This .zip file should contain:

1. a namesurname.pdf file written in LATEX and containing the solutions to the theore-
tical problems you have chosen as well as solutions and explanations for the programming
problems (also make sure you sign your name on the top of the first page),

2. .py files containing the code (one for each of the programming problems you have chosen).

1 Theoretical problems
1. (3 points) Triangulations.

Let S be a set of n points in the plane, n ∈ N.

(a) Show that for all n ∈ N there are at most 2
n(n−1)

2 triangulations of S.
(b) The degree of a point in a triangulation T is the number of edges in T , incident to

that point. For each n ≥ 3 construct a set S such that all possible triangulations of S
have a point of degree n− 1.

(c) If not all points in S are collinear, then any triangulation T of S has at most 3n − 3
edges. Use this fact to prove that any triangulation T of S has a point of degree 5 or
less.

2. (1 point) Vietoris-Rips Complex and Čech Complex.

Let S = {(0, 0), (2, 0), (1, 0.5), (1, 1.5)} ⊂ R2.

(a) Build the Vietoris-Rips complex VR2ε(S) and the Čech complex Čε(S) for ε = 0.8.
(b) Build the Vietoris-Rips complex VR2ε(S) and the Čech complex Čε(S) for ε = 1.

In each case list all the simplices, determine its dimension and find the Euler characteristic.

3. (1 point) Voronoi diagram. For all n ∈ N, n > 3, find a configuration of n points in the
plane such that their Voronoi diagram will have a cell with n− 1 vertices.

4. (3 points) Chessboard Complex.

The chessboard complex of a m× n chessboard is a simplicial complex ∆m×n. The vertices
of ∆m×n correspond to the squares of the chessboard. Simplices of ∆m×n correspond to
non-taking placements of rooks (ie. placements where no two rooks are in the same column
or in the same row).

(a) Show that the chessboard complex ∆3×2 is homeomorphic to the circle S1. (Hint:
Show that the simplicial complex you obtain is a 1-dimensional connected manifold
with no boundary.)



(b) Show that the chessboard complex ∆4×3 is homeomorphic to a torus S1 × S1. (Show
that the complex you obtain is an orientable connected 2-dimensional manifold without
boundary with Euler characteristic 0. Alternatively, you can try to construct an explicit
homeomorphism.)

(c) Is the chessboard complex ∆n×(n−1) is a manifold for all n? List some properties that
support your hypothesis (you do not need to prove it).

2 Programming problems

5. (2 points) Line sweep triangulation

Given a cloud of points S, write a function triangulate(S, vertical = True) that re-
turns the list of edges E and triangles T obtained by the line sweep algorithm. By default
the line should be vertical, and if the optional parameter is set to False the algorithm should
use a horizontal line instead.

Submit a file named linesweeptriangulation.py that also includes a function generify(S)
which adds a small amount of noise to the input points before constructing the triangulation
to ensure they are in general position.

Plot the points, edges and triangles in the plane.

Sample input:

S = [(0, 0), (3, 9), (5, -1), (9, 4), (7, -5)]

Sample output:

Make up two more test cases consisting of at least 100 points and include the resulting
triangulations (with both vertical and horizontal line sweeps) in your report.

6. (2 points) Delauney triangulation

Your file delauney.py should contain a function optimize(T), which takes as input any
triangulation and optimizes it to produce the Delauney triangulation of the underlying set of
points. Do this by implementing the edge-flip algorithm. Plot both the initial triangulation



and the resulting Delauney triangulation. You can include the function generify(S) which
adds a small amount of noise to the input points before constructing the triangulation to
ensure they are in general position.

Plot the Dealuney triangulation in the plane.

Sample input:
[((0, 0), (5, -1), (7, -5)), ((5, -1), (7, -5), (9, 4)),
((0, 0), (5, -1), (9, 4)), ((0, 0), (3, 9), (9, 4))]

Sample output:
[((0, 0), (5, -1), (7, -5)), ((5, -1), (7, -5), (9, 4)),
((5, -1), (3, 9), (0, 0)), ((5, -1), (3, 9), (9, 4))]

Make up at least two more test cases consisting of at least 100 points and include plots of
original and resulting Delaunay triangulations in your report.

7. (3 points) Orientation of surfaces

Your file orientable.py should contain a function orientableQ(T), which returns True if
a 2-manifold given by its triangulation T is orientable and False otherwise. Also include
a function orientable(T), which returns the list of oriented triangles if the 2-manifold is
orientable and None otherwise.

Test your function on triangulations of a torus, a Klein bottle, a sphere, a cylinder and a
Moebius band (you can use the triangulations found on the internet, or you can construct
your own).

A 2-manifold is orientable if you can choose the orientations of all its triangles consistently.
Two triangles that share an edge are consisently oriented if they induce opposite orientations
on the common edge (see figure).



Sample input:
M = [(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (2, 5, 6), (1, 2, 6)]

Sample output:
This surface is not orientable!
Oriented triangles:
None

Sample input:
S2 = [(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]

Sample output:
This surface is orientable.
Oriented triangles:
[(1, 2, 3), (1, 4, 2), (1, 3, 4), (2, 4, 3)]


