Eutopia Pacman Contest documentation

Version 1.0

October 31, 2022

Universitat
upf Pompeu Fabra
Barcelona

. University of Ljubljana

Contents

(1 Introduction|

2 Rules of Pacman Capture the Flag|

. ayoul] e e e e e

...
2.3 Eating Pacman|o

2.4 Power Capsules|
Iz,si g!t!fig:l !;!lig!ll{il --

6 W S
2.7 Computation Time|

3 For students|

[3.1 Setting up the agent and contest frameworks|
3.2 Getting Started|
[3.3 Building your agent|

[4 For participating organizations|
4.1 Running a contest|

4.2 Visualization of the resultsl.

1 Introduction

The Eutopia Pacman contest is an activity consisting of a multiplayer capture-the-flag variant of
Pacman, where agents control both Pacman and ghosts in coordinated team-based strategies. Stu-
dents from different EUTOPIA universities compete with each other through their programmed
agents. Currently both University of Ljubljana and Universitat Pompeu Fabra (UPF) are partici-
pating organizations. UPF is also the tournament organizer, which hosts and run the tournaments
in the HDTIC cluster.

The project is based on the material from the CS188 course Introduction to Artificial Intelligence
at University of California, Berkeley, which was extended for the Al course in 2017 by lecturer Prof.
Sebastian Sardina at the Royal Melbourne Institute of Technology (RMIT University) and Dr. Nir
Lipovetzky at University of Melbourne (UoM). UPF has refactored the RMIT and UoM code. All
the source code is written in Python language.

SCORE: ©

Figure 1: Berkeley’s Pac-Man environment in action.

The expected prerequisites for a participating student include programming skills, knowledge
of data structures and algorithms, search algorithms, and probability, all of them at the level of an
introductory course in Artificial Intelligence.

The project code is developed in a modular way, so that users can work at different levels
depending on their objective. There are three different modules:

Agent development : the source code of a participating agent is contained in a github repository.
Each participating team will build a single repository. The Pacman Agent| defines a basic
template of an agent behavior.

Local tournament : The (Pacman Contest) module contains the scripts needed to run a custom
tournament locally, independently of the tournaments organized by UPF.

UPF tournament : The Pacman Eutopia is the module used by tournament organizers at UPF.
Participating organizations do not need to contribute to this module.

Currently, the framework supports tournaments that are run at UPF according to prespecified
dates between all the tournament participants. A different mode with results continuously being
updated is left for future versions of the framework.

https://guiesbibtic.upf.edu/recerca/hpc
http://ai.berkeley.edu/contest.html
https://github.com/AI4EDUC/pacman-contest-cluster
https://github.com/jsego/pacman-contest/tree/9ddd7f4f6f8df1564c3dbd80c0c633633e07e02e
https://github.com/jsego/pacman-agent/tree/3cf7c4575f34acc1887aba1b2061c10ce1289747
https://github.com/jsego/pacman-eutopia

2 Rules of Pacman Capture the Flag

2.1 Layout

The Pacman map is now divided into two halves: blue (right) and red (left). Red agents (which
all have even indices) must defend the red food while trying to eat the blue food. When on the red
side, a red agent is a ghost. When crossing into enemy territory, the agent becomes a Pacman.

2.2 Scoring

As a Pacman eats food dots, those food dots are stored up inside of that Pacman and removed
from the board. When a Pacman returns to his side of the board, he “deposits” the food dots he
is carrying, earning one point per food pellet delivered. Red team scores are positive, while Blue
team scores are negative.

If Pacman is eaten by a ghost before reaching his own side of the board, he will explode into a
cloud of food dots that will be deposited back onto the board.

2.3 Eating Pacman

When a Pacman is eaten by an opposing ghost, the Pacman returns to its starting position (as a
ghost). No points are awarded for eating an opponent.

2.4 Power Capsules

If Pacman eats a power capsule, agents on the opposing team become “scared” for the next 40
moves, or until they are eaten and respawn, whichever comes sooner. Agents that are “scared”
are susceptible while in the form of ghosts (i.e. while on their own team’s side) to being eaten by
Pacman. Specifically, if Pacman collides with a “scared” ghost, Pacman is unaffected and the ghost
respawns at its starting position (no longer in the “scared” state).

2.5 Observations

Agents can only observe an opponent’s configuration (position and direction) if they or their team-
mate is within 5 squares (Manhattan distance). Additionally, an agent gets a noisy distance reading
for each agent on the board, which can be used to approximately locate unobserved opponents.

2.6 Winning

A game ends when one team returns all but two of the opponents’ dots. Games are also limited to
1200 agent moves (300 moves per each of the four agents). If this move limit is reached, whichever
team has returned the most food wins. If the score is zero (i.e., tied) this is recorded as a tie game.

2.7 Computation Time

We will run your submissions on the UPF cluster, SNOW.Tournaments will generate many processes
that have to be executed without overloading the system. Therefore, each agent has 1 second to
return each action. Each move which does not return within one second will incur a warning. After
three warnings, or any single move taking more than 3 seconds, the game is forfeit. There will
be an initial start-up allowance of 15 seconds (use the registerInitialState function). If your
agent times out or otherwise throws an exception, an error message will be present in the log files,
which you can download from the results page.

3 For students

Students need to first download the source code and install the required dependenciesE]

3.1 Setting up the agent and contest frameworks
Step by step:

1. Clone the repository to download all the necessary code.
git clone git@github.com: jsego/pacman-agent.git

2. Move to the created directory.
cd pacman-agent/

3. Create a virtual environment.
python3.8 -m venv venv

4. Activate the virtual enviroment.
source venv/bin/activate

5. Pull the contest framework.
git submodule update --init --remote

6. Install the contest framework and required python libraries.
cd pacman-contest/
pip install -e .
pip install -r requirements.txt

7. Finally, move to the directory containing the main file (capture.py) to run a match.
cd src/contest/

3.2 Getting Started

By default, you can run a game with the simple baselineTeam that the staff has provided:

python capture.py

A wealth of options are available to you:

python capture.py --help

The code provides one sample team called baselineTeam, contained in a python script named
baselineTeam.py in src/contest folder. It is chosen by default as both the red and blue team,
but as an example of how to choose teams:

python capture.py -r baselineTeam -b baselineTeam

which specifies that the red team -r and the blue team -b are both created from baselineTeam. py.

!Commands expected to be used in an UBUNTU operative system and tested for version UBUNTU 22.04.

Once this last step is working, we can start running games between our custom agents, or be-
tween a custom agent and the baselineTeam. To do this, we will save our agent’s directory in the
src/contest/agents/ folder. Inside this folder we will have our directory, which can have any
name. As an example, let’s imagine that we have two agents, team name_1 and team name_2. Each
of these folders contains an agent, in a script called myTeam.py. An executable example is provided
in the framework:

python capture.py -r agents/team name_1/myTeam.py -b agents/team name 2/myTeam.py
We could also compare our agent against the baselineTeam, by running
python capture.py -r agents/team name_l/myTeam.py -b baselineTeam

There is also an option to record the game and some log info by adding the flags —-record and
--record-log to the previous command.
python capture.py -r agents/team name_l1/myTeam.py -b baselineTeam --record --record-log

The previous command will save the data in the following files:
e Log: www/contest_default/logs/match 0.log

e Replay: www/contest_default/replays/match O.replay

e Score: www/contest _default/scores/match 0. json

Finally, a match can be replayed from a *.replay file. Using the one generated in the previous
execution, we can run it as follows:

python capture.py --replay=www/contest_default/replays/match_0.replay
3.3 Building your agent

In the root folder do the following:

1. Create in myTeam.py a class with the name of your agent that inherits from CaptureAgent,
e.g. class ReflexCaptureAgent (CaptureAgent) :

2. In the new class, override the def choose_action(self, game_state): function to return
the best next action (check the given source code example).

3. (Optional) Add any other functions to the class for reasoning / learning and improving your
agents decision which could also use other code sources in the same folder.

If you want to debug your agent, provide the local route to capture.py, e.g., python capture.py
-r baselineTeam -b ../../../myTeam.py for your agent to play against the baselineTeam.

4 For participating organizations

Participating organizations need to make available the following information to the UPF. Figure []
shows a diagram illustrating the organization of a tournament.

__

Team 1 7 LPIOREREENES GitHub repository

Upload — i E Contest execution
Team 2 — B GitHut repository |——» json file —l»: (e, Results
P il

Participating organization Tournament organizers

Figure 2: Diagram of a tournament: The teams of a participating entity upload their agents to a
GitHub repository. When all agents are ready, the entity generates a . json file with the required
information. The . json file is shared to the organizers of the tournament, who will run the games
and return the results in the form of a website.

The participating organization prepares a . json file that is copied in the DTIC cluster at UPF
by the tournament organizers and is used to automatically run a contest and make public the
results. The contents of the file are:

1. Individual identification number for each team.

2. Team members information (member id and name).

3. Team name.

4. Repository GitHub URL.

5. Last commit code from GitHub repository.

6. Configuration flags: loading_error, syntax_error and updated defined as false by default.

This setup favours scalability, as adding a new team member only implies adding a new entry
in the . json file.

The following example contains two teams (team 1 and team 2), each of them composed of three
students. Team 1 is composed of Anna, Bob, and Claire and Team 1 is composed of Charlie,
Mary, and Jane. There is one repository URL for each team containing directories with the names
of the students.

{

"teams": [

"id": 1,

"last_commit": "3cf7c4575f34acc1887abalb2061c10cel1289747",
"loading_error": false,
"members": [

{
"id":. "123",
"name": "Anna"
},
{
llidll . ll125ll ,
"name": "Bob"
},
{
"id": "139",
"name": "Claire"
}
1,
"name": "firstTeamName2022",

"repository": "https://github.com/user/pacman-agent.git",
"syntax_error": false,
"updated": false

3,
{
"id": 2,
"last_commit": "3cf7c4575f34acc1887abalb2061c10cel1289747",
"loading_error": false,
"members": [
{
"id": "335",
"name": "Charlie"
3,
{
"id": "742",
"name": "Mary"
1,
{
"id": "201",
"name": "Jane"
X
1,
"name": "secondTeamName2022",
"repository": "https://github.com/user/pacman-agent.git",
"syntax_error": false,
"updated": false
X
b

4.1 Running a contest

Running a contest is currently done by UPF only. At a pre-specified date, UPF will run the
tournament with the currently available . json file from all the participating organizations.

4.2 Visualization of the results

Once a tournament has been executed, an open web site is made available with information about
the results. There are three types of results shown: ranking, disqualified teams, and matches.
Figures and [5] show an example of each result.

Position Team Points % Points TOTAL FAILED Score Balance

thirteenthTeamName2022 51.0% 55

sixthTeamName2022 48.0% 55

thirdTeamName2022 48.0% 37

tenthTeamName2022 48.0% =7/

secondTeamName2022 43.0% 19

eighthTeamName2022 41.0% 37

fifthTeamName2022 41.0% 19

firstTeamName2022 41.0% 19

twelfthTeamName2022 38.0% 19

eleventhTeamName2022 38.0% 19

Figure 3: Ranking example showing the teams ordered by score

Team

upf-ai22_teamPytorch2022.log

upf-ai22_fourthTeamName2022.log

Figure 4: Disqualified teams. A .log file is available with information.

Team 1 Team 2 Layout Winner Score file Replay file Log file

fifthTeamName2022 twelfthTeamName2022 defaultCapture.lay None

firstTeamName2022 thirdTeamName2022 defaultCapture.lay None

secondTeamName2022 eleventhTeamName2022 defaultCapture.lay None

eighthTeamName2022 secondTeamName2022 defaultCapture.lay secondTeamName2022

Figure 5: Matches. One row is generated for each match with a score, a file to replay the match
visually, and a .1log file with log information.

	Introduction
	Rules of Pacman Capture the Flag
	Layout
	Scoring
	Eating Pacman
	Power Capsules
	Observations
	Winning
	Computation Time

	For students
	Setting up the agent and contest frameworks
	Getting Started
	Building your agent

	For participating organizations
	Running a contest
	Visualization of the results

