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Herding denotes a special type of so-called shepherding behaviours in which the shepherds try
to steer to flock from a starting point to a target. We investigated the problem of finding optimal
herding strategies by building upon an existing agent-based shepherding model. We extended
this model by adding a surrounding fence to the environment and by considering the case where
multiple shepherds are controlling the flock together. We also implemented an alternative algo-
rithm for multiple shepherds and compared the performance of this algorithm to the one of our
model. Our investigations revealed that in most cases the surrounding fence does not influence
the shepherding process a lot and that the effect of introducing additional shepherds depends
strongly on the behaviour of the flock.
Our model is publicly available at https://github.com/ki-mberley/Collective-Behaviour.

Shepherding behaviours are a class of flocking behaviors in which one or more
agents (called shepherds) try to control the motion of another group of agents (called
flock) by exerting repulsive forces. A real-life example is sheepdogs guiding flocks of
sheep. Herding denotes a special type of shepherding behaviour in which the shep-
herds attempt to steer the flock from a starting point to a target. [1]

In the context of the course Collective Behaviour, we decided to investigate the
problem of finding optimal herding strategies. This problem has many engineering
applications, such as environmental protection or crowd control [2].

Our work builds upon the paper titled Optimal Shepherding and Transport of a
Flock [3] by A. Ranganathan, A. Heyde, A. Gupta, and L. Mahadevan. This paper
models herding as an optimization problem for the shepherd using an agent-based
approach. We enhanced the existing model by introducing two modifications: a sur-
rounding fence and additional shepherds. We analyzed the effects of these extensions
depending on different behaviours of the flock. Additionally, we compared the results
of our model to the results of an existing shepherding algorithm from the literature.

Methods

Description of the original model. The herd consists of N agents which move in a two-
dimensional open field. The behaviour of the agents is based on Reynolds’ boids model
[4]. To be more precise, the movement of each agent depends on three agent-agent
interactions, namely local alignment, repulsion, and weak attraction to the herd center,
and on the repulsion from the shepherd.

This leads to the following velocity field of an agent in the herd, where α, β, γ, and
δ are weights:

vnet = αvalignment
a−a + βvrepulsion

a−a + γvattraction
a−a + δvrepulsion

a−s [1]

Local alignment means that agents that are close to each other align their veloc-
ity vectors. We use the formulation from the Vicsek model [5]: At each timestep, the
orientation of agent i is updated to be the sum of the average 〈θ〉 of the orientations
of the other agents within a certain interaction radius ralignment and a uniformly dis-
tributed noise η ∈ [−η0/2, η0/2], i.e., θalignment(i) = 〈θ〉r<ralignment + η. ralignment is
set to approximately ten times the agent size la. The local alignment term of agent i
arises as the orientation of this agent multiplied by the agent speed va:

valignment
a−a (i) = va

(
cos θalignment(i), sin θalignment(i)

)
The repulsion between the agents is modeled as

vrepulsion
a−a (i) =

∑
i 6=j

exp
(
−
‖rji‖
la

)
rji

‖rji‖

with rji = ri − rj where rk denotes the position of agent k.
The attraction to the herd center quantifies the idea that agents intend to move to

the middle of the herd to avoid being captured by predators. In our model, the attrac-
tion term is independent of an agent’s distance to the herd center but only depends
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on the agents’ speed and the polar angle φ(i) = tan−1 ( ycm−yi
xcm−xi

)
between the agent’s

position (xi, yi) and the herd’s center of mass rcm = (xcm, ycm):

vattraction
a−a (i) = va (cosφ(i), sinφ(i))

Lastly, the repulsion of an agent from the shepherd is modeled similarly to the
repulsion between two agents:

vrepulsion
a−s (i) = exp

(
−‖rsi‖
ls

)
rsi

‖rsi‖

with rsi = ri − rs where rs is the position of the shepherd and ri is the position of
agent i. Based on observations of real-world shepherds, ls was chosen as approximately
30 times la.

The behaviour of the shepherd is not predefined but arises from its goal to trans-
port the entire herd to a certain target position. This goal leads to three conditions,
namely (A) the shepherd should move the herd’s center of mass to the target, (B) the
shepherd may not lose any agents in the process, and (C) the shepherd should keep
target and herd in alignment to maintain the line of sight.

These three transport requirements are weighted with Wmean,Wstd and Wcol respec-
tively and linearly combined into an objective function for the shepherd:

C(rs) = Wmean|∆r|+Wstdσrcm +Wcol|∆Rcol| [2]

The importance of transporting the herd to the target is represented by |∆r| =

|rtarget − rcm|, where rtarget is the position of the target. σrcm =
(∑

i
(ri−rcm)4

N

)1/4

models the objective of keeping the herd cohesive and not losing any agents. The
advantage gained from keeping the flock within the line of sight of the shepherd is
represented by ∆Rcol = rs + ls

rcm - target
‖rcm - target‖ where rcm - target = rtarget − rcm.

The actual simulation is based on a forward Euler scheme implemented in C++.
At each timestep, the positions of all agents are updated based on formula 1. For the
shepherd, several directions are randomly sampled from the uniform distribution on
[0, 2π) and the direction corresponding to the minimal value of the objective function
is chosen.

Implementation of the surrounding fence. The original implementation provided by the
paper’s authors included a code base featuring a fence implementation, specifically a
function for calculating the repulsion force exerted by a fence on a sheep. However,
due to the lack of explanation in the paper regarding the interpretation of the fence
and the difficulty of understanding the author’s implementation solely through code
inspection, we decided not to use their code. Instead, we opted for a basic fence im-
plementation, leaving room for potential future extensions such as incorporating an
actual repulsion force from the fence.

We introduced minimum and maximum x- and y-coordinates, defining the bound-
aries of the surrounding fence. When calculating the next step for a sheep or dog, if
the computed value exceeds the established fence bounds, we adjust the next step’s
value to the corresponding minimum or maximum x- or y-coordinate, preventing the
sheep or dog from crossing the fence. This modification was integrated into the pa-
rameters file (params.txt) to accommodate fence specifications as input. Additionally,
we included a condition in the timestepping.hh file to update the next step in the
presence of a fence. As a final step, we ensure that a fence is shown in the plot by
incorporating the necessary code in trajectory_plotter.py and visualizer.py.

Implementation of multiple shepherds. We began our study by exploring existing liter-
ature that showcased the use of multiple dogs for shepherding [6], [2]. Through this
research, we found that in order to adapt the model for multiple shepherds, we needed
to make two modifications. Firstly, we aimed to include a mechanism that discourages
shepherds from getting too close to each other. Secondly, we wanted to adjust the way
sheep and shepherds repel each other, ensuring it considered the sum of the repulsions
between sheep and each individual shepherd. Although the latter was already part of
the original paper’s implementation, it was not functioning correctly, and we corrected
the code to ensure its proper operation.

To prevent the shepherds from coming too close to each other, we added an addi-
tional term to the cost function which models the proximity of one shepherd to the
other ones. We defined the proximity as the inverse of the distance, so two shepherds
that are very close to one another are penalized more heavily. The proximity penalty
for one shepherd is the sum of the proximities of all other shepherds. We introduced a
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parameter named shepherd_distance_penalty which is used to balance the proximity
penalty with the other terms in the cost function.

With these adjustments in place, we successfully implemented a basic version of the
model with multiple shepherds.

Implementation of an agent-based shepherding model as a basis for comparison. To
test whether our implementation and especially our extensions of the model were work-
ing well, we wanted to compare its performance to the one of an algorithm from the
literature. During our research on existing multiple-shepherd algorithms, we deter-
mined the agent-based model from the paper Simulating Single and Multiple Sheepdogs
Guidance of a Sheep Swarm [2] to be the most suitable for our purposes.

In this paper, the shepherds are modeled as agents that act based on the goals
of keeping the herd cohesive and guiding it towards the target. Additionally, each
shepherd is at the same time attracted to the center of mass of the other shepherds
and repelled from other shepherds if they are coming too close.

Because the paper did not provide an implementation, we recreated a basic ver-
sion of the algorithm ourselves. As the sheep model in [2] is very similar to the sheep
model from our chosen paper [3], we reused our existing sheep model and only adapted
the model of the shepherd.

Results

Results from the original paper. The original paper [3] identified three different emerg-
ing herding strategies, namely driving, droving, and mustering. Mustering involves
the shepherd circling the flock to keep it together while droving entails the shepherd
chasing the flock in the intended direction. Driving, on the other hand, involves the
shepherd positioning themselves within the flock and guiding it from the inside. The
paper comes to the conclusion that the optimal herding strategy depends on just two
parameters: the ratio of the herd size to the shepherd repulsion length and the ratio of
herd speed to shepherd speed. We managed to recreate these three types of shepherd-
ing behaviours in our experiments. The exact parameter values that we used to make
each of the three strategies emerge can be found in our GitHub repository.

Introduction of a surrounding fence. The introduction of a surrounding fence ensures
that both the dogs and sheep are surrounded by a boundary and prevents them from
crossing it. In Figures 1 and 2, the outcomes are depicted for the herding style driving
without and with a fence. As intended, the presence of the fence confines the sheep
and dog within its boundaries, while the dog still leads the sheep to the target.

Introduction of multiple shepherds. We analyzed the impact of the number of shep-
herds and of the parameter shepherd_distance_penalty on the duration of the herd-
ing process. For this analysis, we removed the randomness from our model by setting
a fixed random seed.

In the case of driving, a single dog needed 35240 timesteps to successfully complete
the herding process. The fastest result that we were able to achieve in the two-dog sce-
nario was 38102 timesteps for shepherd_distance_penalty = 1. This parameter value
leads to one dog mainly staying at the center of the herd and the other one mainly
staying outside of the herd without influencing it much. With three dogs the number
of timesteps reduced to 27260 for shepherd_distance_penalty = 1. Again, one dog
mostly stayed at the center of the herd while the other two dogs stayed outside of it.

In the case of droving, a single dog needed 1568 timesteps for a successful comple-
tion of the herding process. Introducing a second dog with shepherd_distance_penalty
= 0.01 reduced the duration to 854 timesteps. The two dogs collaborate and drove the
herd together towards the target. The droving behaviours for one and two dogs are
depicted in Figures 3 and 4. With three dogs the number of timesteps reduced even
further to 491 for shepherd_distance_penalty = 0.001. Again, the three dogs cooper-
ated and drove the herd together.

In the case of mustering, a single dog needed 9002 timesteps to lead the herd to the
target. In the two-dog scenario with shepherd_distance_penalty = 0.01, the dura-
tion reduced to 2178 timesteps. The two dogs cooperated and used a mix of droving
and mustering. The introduction of a third dog, on the other hand, led to a significant
increase of the duration to 41962 timesteps for shepherd_distance_penalty = 0.001.
The three dogs do not really cooperate but all stay at the center of the herd and drive
it towards the target.

Comparison to the agent-based shepherding model. For the agent-based shepherding
model, we again studied the driving, the droving, and the mustering scenario with
one, two, and three dogs. In all cases, the herding task was successfully completed.
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Interestingly, the duration of the herding did not seem to depend as much on the
shepherding behaviour as it was the case for our objective-function-based model.

In the case of driving, the agent-based model needed 28123 timesteps with one,
24322 with two, and 28186 with three dogs. In the case of droving, it took 27749
timesteps with one, 34581 with two, and 33421 timesteps with three dogs. Lastly, in
the case of mustering, 24986 timesteps were required with one, 25929 timesteps with
two, and 28861 timesteps with three dogs.

Discussion

Introduction of a fence. Our hypothesis was that the fence could be used by the shep-
herd to control the flock and keep the sheep close together more easily. However, our
experiments did show such behaviour only for very specific parameter choices. The im-
pact of the fence on the herding strategies of the shepherd remains to be investigated
in more detail in future work.

Introduction of multiple shepherds. The effect of the introduction of one or multiple
additional shepherds differed strongly for the three shepherding scenarios. In the case
of driving the dogs did not collaborate and only one of the dogs worked on leading the
herd towards the target. Depending on the value of shepherd_distance_ penalty, the
remaining dogs either ran around and disturbed the herd or stayed outside of the herd
and did not influence it much. In the droving scenario, on the other hand, the dogs
worked together and the introduction of additional dogs sped up the herding process.
Lastly, in the case of mustering, two dogs were able to guide the herd more efficiently
than a single dog. The introduction of a third shepherd, however, led to the disap-
pearance of this cooperation and to an increase in the duration of the shepherding
process.

Our results might indicate that the usefulness of having more than one shepherd
depends on the behaviour of the agents in the flock. Of course, additional experiments
are necessary to confirm this hypothesis.

Comparison to the agent-based shepherding model. The agent-based shepherding
model completed the herding more quickly in the case of driving with one or two dogs
and in the case of mustering with three dogs. In all other cases, our objective-function-
based model solved the task with fewer timesteps.

This indicates that our approach works well but also that the optimal shepherding
algorithm depends on the behaviour of the herd. Again, additional experiments are
necessary to confirm this hypothesis, especially because we have not yet exhaustively
studied the parameter space of the agent-based shepherding model.

Conclusion and outlook

In this project, we have built upon the agent-based shepherding model from the pa-
per Optimal Shepherding and Transport of a Flock [3] and extended it by introducing
a surrounding fence and additional shepherds. Additionally, we have compared our
approach to the existing agent-based shepherding model from the paper Simulating
Single and Multiple Sheepdogs Guidance of a Sheep Swarm [2].

Possible next steps include a more detailed analysis of our extensions. It would
be interesting to study whether the three observed shepherding behaviours driving,
droving, and mustering also arise for more than one shepherd and, if so, for which sets
of parameters. Furthermore, one could extend the model even further, for example by
introducing obstacles along the path from the herd to the target.

CONTRIBUTIONS. Franziska Weber took care of the GitHub repository, researched existing
models with multiple shepherds, wrote the description of the original model, analyzed the
effect of introducing multiple shepherds, implemented the alternative agent-based shepherding
algorithm and compared it to the optimization-based approach. Kimberley Frings corrected
and initially executed the existing implementation, implemented the model extensions with a
fence and multiple shepherds, composed all three reports and analyzed the effect of introduc-
ing a surrounding fence. Franz Muszarsky created the presentation and the video. All three
worked on understanding the implementation of the model and on the organization of the
project.
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Appendix

Figure 1. Trajectory plot for one shepherd in the driving scenario without a fence. The colors of the agents indicate their
orientation.

Figure 2. Trajectory plot for one shepherd in the driving scenario with a fence.
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Figure 3. Trajectory plot for one shepherd in the droving scenario.

Figure 4. Trajectory plot for two shepherds in the droving scenario.
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