CS246: Mining Massive Data Sets Winter 2024

Homework 3

Please read the homework submission policies at http://cs246.stanford.edu.

1 Dead ends in PageRank computations (25 points)

Let the matriz of the Web M be an n-by-n matrix, where n is the number of Web pages.
The entry m;; in row ¢ and column j is 0, unless there is an arc from node (page) j to node
i. In that case, the value of m;; is 1/k, where k is the number of arcs (links) out of node j.
Notice that if node j has k > 0 arcs out, then column j has k values of 1/k and the rest 0’s.
If node j is a dead end (i.e., it has zero arcs out), then column j is all 0’s.

Let r = [ry,72,...,7,]7 be (an estimate of) the PageRank vector; that is, r; is the estimate
of the PageRank of node i. Define w(r) to be the sum of the components of r; that is
w(r) =3 07

In one iteration of the PageRank algorithm, we compute the next estimate r’ of the PageRank
as: 1’ = Mr. Specifically, for each i we compute r; = > 7| M;;r;. Define w(r’) to be the
sum of components of ’; that is w(r’) = > 7

i=1"1"

You may use D (the set of dead nodes) in your equation.

(a) [6pts]

Suppose the Web has no dead ends. Prove that w(r’) = w(r).

(b) [9pts]

Suppose there are still no dead ends, but we use a teleportation probability of 1 — 3 where we
teleport to a random node (0 < 8 < 1). The expression for the next estimate of r; becomes
i = B> - Miyr;) + (1 = B)/n. Under what circumstances will w(r’) = w(r)? Prove your
conclusion.

(c) [10pts]

Now let us assume there are one or more dead ends. Call a node “dead” if it is a dead
end and “live” if not. At each iteration, we teleport from live nodes with probability 1 — 3
and teleport from dead nodes with probability 1. In both cases, we choose a random node
uniformly to teleport to. Assume w(r) = 1.
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Write the equation for 7/ in terms of #, M, r, n, and D (where D is the set of dead nodes).
Then, prove that w(r’) is also 1.

What to submit
(i) Proof [1(a)]
(ii) Condition for w(r') = w(r) and Proof [1(b)]

(iii) Equation for r; and Proof [1(c)]

2 Implementing PageRank and HITS (30 points)

In this problem, you will learn how to implement the PageRank and HITS algorithms in
Spark. The general computation should be done in Spark, and you may also include numpy
operations whenever needed. You will be experimenting with a small randomly generated
graph (assume graph has no dead-ends) provided at graph-full.txt.

There are 100 nodes (n = 100) in the small graph and 1000 nodes (n = 1000) in the full
graph, and m = 8192 edges, 1000 of which form a directed cycle (through all the nodes)
which ensures that the graph is connected. It is easy to see that the existence of such a cycle
ensures that there are no dead ends in the graph. There may be multiple directed edges
between a pair of nodes, and your solution should treat them as the same edge. The first
column in graph-full.txt refers to the source node, and the second column refers to the
destination node.

Implementation hint: You may choose to store the PageRank vector r either in memory or
as an RDD. Only the matrix M of links is too large to store in memory, and you are allowed
to store matrix M in an RDD. e.g. data = sc.textFile(”graph—full.txt”). On an actual
cluster, an RDD is partitioned across the nodes of the cluster. However, you cannot then
M = data.collect() which fetches the entire RDD to a single machine at the driver node and
stores it as an array locally.

(a) PageRank Implementation [15 points]

Assume the directed graph G = (V, F) has n nodes (numbered 1,2,...,n) and m edges, all
nodes have positive out-degree, and M = [Mj;],xn is @ an n X n matrix as defined in class
such that for any 7,5 € [1,n]:

1 . . .
Mj; = { deey 1t (7)€ B,

0 otherwise.

Here, deg(i) is the number of outgoing edges of node 7 in G. If there are multiple edges
in the same direction between two nodes, treat them as a single edge. By the definition of
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PageRank, assuming 1 — 3 to be the teleport probability, and denoting the PageRank vector
by the column vector r, we have the following equation:

r:ﬂleﬁMr, (1)
n

Based on this equation, the iterative procedure to compute PageRank works as follows:

1. Initialize: r® = %1

2. For i from 1 to k, iterate: r® = %1 + BM (=D

Run the aforementioned iterative process in Spark for 40 iterations (assuming § = 0.8) and
obtain the PageRank vector r. In particular, you don’t have to implement the blocking
algorithm from lecture. The matrix M can be large and should be processed as an RDD in
your solution.

Compute the PageRank scores and report the node id for the following using graph-full. txt:

e List the top 5 node ids with the highest PageRank scores.

e List the bottom 5 node ids with the lowest PageRank scores.
For a sanity check, we have provided a smaller dataset (graph-small.txt). In that dataset,
the top node has id 53 with value 0.036. Note that the graph-small.txt dataset is only

provided for sanity check purpose. Your write-up should include results obtained using
graph-full.txt (for both part (a) and (b)).

(b) HITS Implementation [15 points]

Assume the directed graph G = (V, F) has n nodes (numbered 1,2,...,n) and m edges, all
nodes have non-negative out-degree, and L = [L;;],xn is a an n X n matrix referred to as the
link matriz such that for any i,j € [1,n]:

L _[1ifi—g)er
Y1 0 otherwise.

Given the link matrix L and some scaling factors A, u, the hubbiness vector h and the
authority vector a can be expressed using the equations:

h = ALa,a = pL*h (2)

where 1 is the n x 1 vector with all entries equal to 1.

Based on this equation, the iterative method to compute h and a is as follows:
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1. Initialize h with a column vector (of size n x 1) of all 1’s.

2. Compute a = LT h and scale so that the largest value in the vector a has value 1.

w

. Compute h = La and scale so that the largest value in the vector h has value 1.

W

. Go to step 2.

Repeat the iterative process for 40 iterations, assume that A = 1, 4 = 1 and then obtain the
hubbiness and authority scores of all the nodes (pages). The link matrix L can be large and
should be processed as an RDD. Compute the following using graph-full.txt:

e List the 5 node ids with the highest hubbiness score.
e List the 5 node ids with the lowest hubbiness score.
e List the 5 node ids with the highest authority score.
e List the 5 node ids with the lowest authority score.

For a sanity check, you should confirm that graph-small.txt has highest hubbiness node
id 59 with value 1 and highest authority node id 66 with value 1.

What to submit

(i) List 5 node ids with the highest and least PageRank scores [2(a)] using graph-full.txt

(ii) List 5 node ids with the highest and least hubbiness and authority scores [2(b)] using
graph-full.txt

(iii) Upload all the code via Gradescope [2(a) & 2(b)]

3 Clique-Based Communities (25 points)

Imagine an undirected graph G with nodes 2,3,4,...,1000000. (Note that there is no node
1.) There is an edge between nodes 7 and j if and only if 7 and j have a common factor other
than 1. Put another way, the only edges that are missing are those between nodes that are
relatively prime; e.g., there is no edge between 15 and 56.

We want to find communities by starting with a clique (not a bi-clique) and growing it by
adding nodes. However, when we grow a clique, we want to keep the density of edges at 1;
i.e., the set of nodes remains a clique at all times. A maximal clique is a clique for which it
is impossible to add a node and still retain the property of being a clique; i.e., a clique C'is
maximal if every node not in C' is missing an edge to at least one member of C.

Let C; be the set of nodes of G that are divisible by i, where 7 is a positive integer.
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(a) [5 points]

Prove that C; is a clique for any ¢ > 1.

(b) [10 points]

Under what circumstances is C; a maximal clique? Prove that your conditions are both
necessary and sufficient. (Trivial conditions, like “C; is a maximal clique if and only if C; is
a maximal clique,” will receive no credit.)

(c) [10 points]

Prove that Cy is the unique largest clique. That is, it has more elements than any other
clique. (INote: Not all cliques are in the form of C;)

What to submit

(i) Proof that the specified nodes are a clique.
(ii) Necessary and sufficient conditions for C; to be a maximal clique, with proof.

(iii) Proof that Cs is the unique largest clique.

4 Dense Communities in Networks (20 points)

In this problem, we study the problem of finding dense communities in networks.

Definitions: Assume G = (V, E) is an undirected graph (e.g., representing a social net-
work).

e For any subset S C V', we let the induced edge set (denoted by E[S]) to be the set of
edges both of whose endpoints belong to S.

e For any v € S, we let degg(v) = [{u € S|(u,v) € E}|.

e Then, we define the density of S to be:

_ |ES]]

e Finally, the maximum density of the graph G is the density of the densest induced
subgraph of GG, defined as:

pH(G) = max{p(5)}.

SCV
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Goal. Our goal is to find an induced subgraph of G whose density is not much smaller
than p*(G). Such a set is very densely connected, and hence may indicate a community
in the network represented by . Also, since the graphs of interest are usually very large
in practice, we would like the algorithm to be highly scalable. We consider the following
algorithm:
Require: G = (V,E) and € > 0
S8« V
while S # () do
A(S):={ie S |degg(i) <2(1+¢€)p(S)}
S+ S\ A(S)
if p(S) > p(S) then
S« S
end if
end while
return S

The basic idea in the algorithm is that the nodes with low degrees do not contribute much to
the density of a dense subgraph, hence they can be removed without significantly influencing
the density.

We analyze the quality and performance of this algorithm. We start with analyzing its
performance.

(a) [10 points]

We show through the following steps that the algorithm terminates in a logarithmic number
of steps.

i. Prove that at any iteration of the algorithm, |A(S)| > —|S].

€

1+e€

ii. Prove that the algorithm terminates in O(log, . (n)) iterations, where n is the initial
number of nodes.

(b) [10 points]

We show through the following steps that the density of the set returned by the algorithm
is at most a factor 2(1 + €) smaller than p*(G).

i. Assume S* is the densest subgraph of G. Prove that for any v € S*, we have: degg.(v) >
P (G).

ii. Consider the first iteration of the while loop in which there exists a node v € S* N A(S).
Prove that 2(1 4+ €)p(S) > p*(G).

iii. Conclude that p(S) > ﬁp*(G).
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What to submit

(a) i Proof of [A(S)| > 7[5].

ii. Proof of number of iterations for algorithm to terminate.

(b) i. Proof of degg.(v) > p*(G).
ii. Proof of 2(1 4 €)p(S) > p*(G).

iii. Conclude that p(S) > ﬁp*(G).

5 Learning Embeddings (10 points)

In this problem, we want to explore learning embeddings with Singular Value Decomposition.
We have a corpus of 10 words and a set of 15 documents from a Conservation Zoo. We can
represent the documents and the corpus of words in matrix form as

’ H 700 ‘ kangaroo ‘ monkey ‘ alligator ‘ tiger ‘ camel ‘ eagle ‘ lemur ‘ dragon ‘ pizza ‘

docl | 51 92 14 71 60 20 82 86 74 74
doc2 | 87 99 23 2 21 52 1 87 29 37
doc 3 1 63 59 20 32 75 o7 21 88 48
doc4 | 90 o8 41 91 59 79 14 61 61 46
doch | 61 50 o4 63 2 50 6 20 72 38
doc6 | 17 3 88 29 13 8 89 92 1 83
doc7 | 91 99 70 43 7 46 34 7 80 35
doc8 | 49 3 1 ) 23 3 93 92 62 17
doc9 || 89 43 33 73 61 99 13 94 47 14
doc10 | 71 77 86 61 39 84 79 81 52 23
doc1l || 25 88 99 40 28 14 44 64 88 70
doc12 || 8 87 0 7 87 62 10 80 7 34
doc13 | 34 32 4 40 27 6 72 71 11 33
doc14 || 32 47 22 61 87 36 98 43 85 90
doc15 || 34 64 98 46 7 2 0 4 39 13

You will first decompose the matrix above. You are allowed to use any SVD solver. We
recommend using numpy.linalg.svd(). Feel free to use the below code to recreate the matrix
above in memory:

import numpy as np

np.random.seed (42)
x = np.random.randint (0,100, size=(15,10))
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(a) [5 Points]

Task: Using SVD and r = 9, compute the embedding for all 15 documents. Round to the
nearest 2nd decimal.

(b) [5 Points]

Task: Using SVD and r = 9, compute the embedding for all 10 words. Round to the nearest
2nd decimal.

(i) Values from [part (a)]

(ii) Values from [part (b)]

(iii) Submit your code for both parts a and b to Gradescope
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