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We propose a procedure for analyzing and characterizing complex networks. We apply this to the social
network as constructed from email communications within a medium sized university with about 1700 em-
ployees. Email networks provide an accurate and nonintrusive description of the flow of information within
human organizations. Our results reveal the self-organization of the network into a state where the distribution
of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of
scaling in other self-organized complex systems, as, for instance, river networks, could also be the underlying
driving force in the formation and evolution of social networks.
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Signatures of complex systems appear in disciplines athe email network of University at Rovira i VirgillURV) in
diverse as biology, chemistry, economy, and computer scifarragona, Spain, containing 1669 users including faculty,
ence, to name just a few. More specifically, the study of theesearchers, technicians, managers, administrators, and
complex networks of interactions in such systems has regraduate students.
ceived a lot of attention from the statistical physics commu- Bulk emails provide little or no information about how
nity [1-5]. The structure of these complex networks is aindividuals or teams interact, so to minimize their effec:
reflection of the dynamics of their formation and evolution, We €liminate emails that are sent to more than 50 different
and can be partially characterized using statistical obserecipients andii) we disregard links that are unidirectional,
ables such as the average distance between rddethe that is, we consider that two nodésand B are connected
clustering coefficienf1], and the degree distributioi2,3].  only if A has sent an email 8 andB has also sent an email
Even though these measures are very useful in some Situ@. A. With these restrictions, the network is an undirected
tions, often they are not sufficient to describe key features o@raph[26].
networks. In the specific field of social sciences, a more de- The cumulative degree distributioR(k) of the email
tailed description of human interactions is crucial to undernetwork—representing the probability that a node kas
stand the formation and evolution of complex social net-more links to other nodes—is exponential
works. _ | P (k) o exp( — k/k*) )

In this paper we describe a procedure to characterize the
structure of networks, based on a recently proposed algder k=2, with k* =9.2. This result is in contrast with recent
rithm to identify communitiesn graphs[6]. Our procedure findings indicating that some technology based social
allows one to study quantitatively the hierarchical structurenetworks—such as rough email networf@|, the instant
of nested communities in networks. Moreover we apply themessaging networkl10], or the PGP(pretty good privacy
procedure to a real social network. We define and analyze thencryption networl{ 11}—which show heavily skewed de-
complex email network of an organization with about 1700gree distributions, but is consistent with the proposal of
employees and determine its community structure. Our reAmaral and co-workers that the truncation of the scale-free
sults reveal that this network self-organizes into a selfbehavior in real world networks is due to the existence of
similar structure, suggesting that some universal mechanistimitations or costs in the establishment of connections
could be the underlying driving force in the formation and[3,12]. Indeed, it seems plausible that there are costs to main-
evolution of social networks, as happens in other complexaining active social acquaintances and therefore active com-
systemq7,8]. munications. However, it is relatively easy to keep many

Apart from work related reasons, ties between individualselectronic acquaintance®spen although most of them are
in any organization arise, without external influence, due tgrobably inactive from a social point of view.
personal, political, and cultural reasons, among others. The Out of the total 1669 nodes, 1133 belong to the giant
rapid development of electronic communications provides &omponent. The rest are isolated or, at most, connected by
powerful tool to analyze the informal self-organized socialpairs. In the following, we focus on this giant component
network arising as a result of the formation of such ties.that can be characterized by statistical properties such as its
Indeed, every time an email is sent, the addresses of thgustering coefficien€C=0.254 and its average shortest path
sender and the receiver are routinely registered in a servdengthd=3.606[1]. For comparison, we construct a random
Therefore, anemail networkcan be built regarding each network with exactly the same exponential degree distribu-
email address as a node and linking two nodes if there is ation as the email network following the procedure proposed
email communication between them. We take as a case studly Ref.[13] (from now on we will call it random exponential
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versity, that is, to a department or college, or to management
units such as the office of the Rector of the university. Two
properties of the tree are worth noting. First, a clear branch-
ing structure emerges, with branches essentially containing
nodes of the same color. This shows that the identification of
communities is successful, despite the complexity of the in-
teractions in the original email network. Second, the branch-
ing structure is far from simple. Indeed, each branch is
formed, in general, by a system of nested smaller sub-

rithm. (a) A simple network with two communitiesb) Binary tree branches that give rise to a c_ompllcated st_ructure that visu-
generated by the GN algorithm. Each branch in the binary treé'?}IIy resembles some ?elf'?"m'l_a'r_sy‘c‘tems in nature such as
corresponds to a community in the original network and centrafiver networks[16] or diffusion-limited aggregatels.7]. For
nodes in a community, such &sappear as the tips of the branches. comparison, we also show the tree generated by the GN al-
) ) ] gorithm from the random exponential netwdfg. 2(c)]. In
network. The clustering of the exponential network is ap- conirast to the tree for the URV email network, the branching
proximately ten times smalleC=0.028 while the average g ctyre is almost trivial with most of the branches contain-
shortest path length is very similae=3.317, as happens in ing only one or two nodes. This is the expected result for a

Sm_l"f‘" Wr?éldr ntztr\ll\(ljo:rljs{l].tru wre of th ial network fthenetwork that does not have any sort of community structure.
0 unders € structure of the soclal NEtWork o Once the binary tree has been obtained, we look for a

organization, we are interested in determining how individu- uantitative characterization of the community structure.

; ; . . q
2'; ;rrlteir\elxizt a:;gefct)cr)mhigrr?grpzrt(;]:rt, ||;10tuur2, L?‘;etr?sct V\;g: esa%?:irst, we consider the cumulative community size distribu-
gving 9 groups, » groups Ol;, P(s), that is, the probability of a community having a

groups. In other words, we want to unravel themmunity larger or equal ts. Each nodei of the binary tree

strr(;Jc(tjgree dorfeg;;tln eéwoéli(r'\,;g ;Ir? d ?\(I)evv\\//r?(a%f\g Eg]etoa:gg::thm represents a community—or a single email address. Its com-
brop y by munity sizes; is just the summation of the sizes of its two

tify communities in complex network&ee Fig. 1 > RS )
fyThe GN algorithm propceeds as folloys). ?he between- ©SPIINGJ1 a”‘?'lz- Si=Sj, TS, F|gur§ .:{a).show.s how t.o

ness of an edge is defined as the number of minimum patHPmpute the sizes of all the communities in a simple binary
connecting pairs of nodes that go through that €dge15.  tree and the corresponding probability distributiefs), that
The key idea is that the edges that connect highly clusterel§ the probability that a community has size larger or equal
communities have a higher edge betweenness—Bdg@ [0S The community size dlst_r|bqt|on for the ema|l network
Fig. 1(a—and therefore cutting these edges should separafé Presented in Fig.(@). The distribution is heavily skewed,
communities. The algorithm identifies and removes the linkiollowing a power law behavioP(s)es™ with @=0.48
with the highest betweenness in the network. After evenpetweens=2 ands~100. Beyond this value, the distribu-
removal, the betweenness of the edges is recalculated and th@n shows a sharp decay and,sat 1000 a cutoff that cor-
process is repeated until the “parent” network splits, produc-ésponds to the size of the system. The power law of the
ing two separate “offspring” networks. The offspring can be COmmunity size distribution suggests that there is no charac-
split recursively in the same way until they comprise onlyteristic community size in the networtup to s~100). To
one individual. rule out the possibility that this behavior is due to the com-

In order to describe the entire splitting process, we genmunity identification algorithm, we also consider the com-
erate a binary tree in which bifurcatiofshite nodes depict munity size distribution for a random exponential network
communities and leavethlack nodes represent individual and for a hierarchical network as proposed by Ravasz and
addresses of the email netwdikig. 1(b)]. At the beginning Barabasi(RB) [18]. While the community size distribution
of the process, the network in Fig(al is a single entity, ©Of the random exponential network is completely different—
represented by node 1 in the tree. After the removal of thavith essentially no communities of sizes between 2 and
edgeBE, the network is split into two subnetworks, 2 and 3, 100— the behavior of the RB model is similar to the scaling
containing nodeé\—D andE—I, respectively. Since the two Presented by the email network. Therefore, it seems that the
offspring networks have no further internal community struc-Self-replicating structure of RB networks, which is implicit
ture all the links within each have the same betweenness. IRy construction, is a reasonable first approximation to the
this case, one of them will be selected at random for restructure of the email network. o .
moval. Iterating the link removal procedure, nodes will be ~ The characterization of the community binary tree using
separated randomly one by one by the GN algorithm, in sucthe cumu_latlve size distribution has_lts analogy in th_e river
a way that each community will appear as a branch in thél_etwork_Ilterature[_16,20,2]]. The equwalent measure is the
binary tree. It is important to note that central nodes, such adistribution of drainage areas, which represents the amount
nodeE, will be separated last. This particular characteristicof water that is generated upstream of a given pi@iee Fig.
of the GN algorithm can be used with managerial purposes(P)]. The drainage area of a given point is the number of
to detect those persons that act like hubs in the organizatiofiodes upstream of it plus one. For a paimtith offspring j;

The community binary tree for URV is shown in Fig. 2. @ndj, the drainage areg is therefores;=s; +s; +1. The
Each color in Fig. £a) corresponds to one center of the uni- similitude between the community size distribution of the

FIG. 1. Community identification according to the GN algo-
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FIG. 3. Self-similarity in the community structuréa) Calcula-
tion of the community size distribution for a binary tree generated
by the community identification algorithm. Black nodes represent
the actual nodes of the original graph while white nodes are just
graphical representations of communities that arise as a result of the

FIG. 2. (Color onling Communities in the email network of splitting procedure. Node& andB belong to a community of size
URV. (a) Binary tree showing the result of applying the GN algo- 2, and together witE form a community of size 3. Similarly, D,
rithm to the email network of URV. The position indicated by the andF form another community of size 3. These two groups together
arrow represents the root of the treguivalent to node 1 in Fig. form a higher level community of size 6. Note that a single node
1(b)] and branches are depicted so that they can be clearly diffelselongs to different communities, i.e., different hierarchical levels.
entiated. In particular, only the leaves of the tree, corresponding tgb) Calculation of the drainage area distribution for a river network.
email addresses, are shown, as in the zoomed detail. Colors depi@) Calculation of the Horton-Strahler index. In this case, there are
different centers.(b) Same as before but without showing the ten branches with index 1, three branches with index 2, and one
leaves. Branches are now colored according to their Horton-Strahldsranch with index 3(d) Comparison between the distributi®{s)
index (see text (c) Same agb) for a random network. The lack of of community sizes in the email network, in the random exponential
community structure is reflected in the absence of branches, in cometwork, and in the hierarchical network model proposed by Ravasz
trast with the intricate self-similar structure @). and Barabas{RB), with n=4 and 5 leveld18]. (e) The standard
deviation of the bifurcation ratio®; for the email network, an

current email network in Fig. @) and the area distribution Erdos-Renvi(ER) random graph with the same number of nodes

of the Fella river network in Italy reported in Fig. 2 of Ref. and links[19], a hierarchic_:al RB networ[<1_8], a scale-free_ network
[21] is striking. The exponentr=0.45 for the power law as proposed by Barabasi and AIb@#) with the same size as the

" Lo mail network andn=>5 [2], and the random exponential network.
region of this river and the average exponent for sever

. he community tree of the email network is topologically self-
rvers @yiyer=0.43£0.03 reported by Ref§20,21], respec- similar with B:y5.8. Topological self-similarity dogs ngt ho)lld for
tively, are very close to the current=0.48. Moreover, the 4 . Giher networks.
behavior shown in Fig. (8) with first a sharp decay and then
a final cutoff is also shared by river networks, which are
known to evolve to a state where the total energy expenditur
is minimized [20,22,23. The possibility that communities
within organizations might also spontaneously self-organiz
into a form in which some quantity is optimized is very
appealing and deserves further investigation. i1 =i

To further understand this point, it is pertinent to ask =t 172 )
whether there are other emergent properties shared by both. maxip,iz) if ip#is.
To answer this question we consider a standard measure for
categorizing binary trees: the Horton-StrahlétS) index, Note that the index of a branch changes when it meets a
originally introduced for the study of river networks by Hor- branch with higher index, or when it meets a branch with the
ton [24], and later refined by Strahlg25]. Consider the bi- same value and both of them join forming a branch with

nary tree depicted in Fig.(8). The leaves of the tree are
Sssigned a HS index=1. For any other branch that ramifies
into two branches with HS indiceis andi,, the index is
Talculated as follows:
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higher index. In terms of communities, the interpretation ofself-similarity. The lack of topological self-similarity in this
the HS index is the following. The index of a community case is related, paradoxically, to scale-free connectivity dis-
changes when it joins a community of the same index. Contribution of the RM model, which makes theentral units
sider, for instance, the lowest levels: individuals=@) join  different from the peripheral ones.

to form a group(or team, withi =2), which in turn will join By revealing the structure of the email network, the pro-
other groups to form aecond levegroup (or departmenti posed methodology leads us to realize that community struc-
=3). Therefore, the index reflects tlevelof aggregation of  ture is self-similar. Self-similarity is a fingerprint of the rep-
communities. The number of branchéswith indexi can be  lication of the structure at different levels of the social
determined once the HS index of each branch is known. Theetwork, and could be the result of a trade-off between the

bifurcation ratiosB; are then defined by need for cooperation and the costs of keeping active connec-
tions. Moreover, the emergence of scaling, as well as the
N similarity with river networks, raises important questions
Bi:Ni+1 () about the mechanisms underlying the interactions between
individuals. As pointed out in a recent pajgé8l, the scaling
(by definitionB;=2). properties of river networks are ubiquitous. By using the

WhenB;~B for all i, the structure is said to be topologi- same argument, one can expect that the scaling behavior we
cally self-similar, because the overall tree can be viewed asbtain should be observable in any human social network. At
being composed oB subtrees, which in turn are composed the same time, the similarity with river networks suggests
of B smaller subtrees with similar structures and so forth forthat a common principle of optimization—of flow of infor-
all scaleq17]. River networks are found to be topologically mation in organizations or of flow of water in rivers—could
self-similar with 3<B<5 [17]. be the underlyinglriving forcein the formation and evolu-

As a measure of topological self-similarity one can calcu-tion of social networks.
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