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Self-similar community structure in a network of human interactions

R. Guimera`,1,2 L. Danon,3,4 A. Dı́az-Guilera,3,1 F. Giralt,1 and A. Arenas4
1Departament d’Enginyeria Quı´mica, Universitat Rovira i Virgili, 43007 Tarragona, Catalunya, Spain

2Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208, USA
3Departament de Fı´sica Fonamental, Universitat de Barcelona, 08028 Barcelona, Catalunya, Spain
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We propose a procedure for analyzing and characterizing complex networks. We apply this to the social
network as constructed from email communications within a medium sized university with about 1700 em-
ployees. Email networks provide an accurate and nonintrusive description of the flow of information within
human organizations. Our results reveal the self-organization of the network into a state where the distribution
of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of
scaling in other self-organized complex systems, as, for instance, river networks, could also be the underlying
driving force in the formation and evolution of social networks.
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Signatures of complex systems appear in disciplines
diverse as biology, chemistry, economy, and computer
ence, to name just a few. More specifically, the study of
complex networks of interactions in such systems has
ceived a lot of attention from the statistical physics comm
nity @1–5#. The structure of these complex networks is
reflection of the dynamics of their formation and evolutio
and can be partially characterized using statistical obs
ables such as the average distance between nodes@1#, the
clustering coefficient@1#, and the degree distribution@2,3#.
Even though these measures are very useful in some s
tions, often they are not sufficient to describe key feature
networks. In the specific field of social sciences, a more
tailed description of human interactions is crucial to und
stand the formation and evolution of complex social n
works.

In this paper we describe a procedure to characterize
structure of networks, based on a recently proposed a
rithm to identify communitiesin graphs@6#. Our procedure
allows one to study quantitatively the hierarchical struct
of nested communities in networks. Moreover we apply
procedure to a real social network. We define and analyze
complex email network of an organization with about 17
employees and determine its community structure. Our
sults reveal that this network self-organizes into a s
similar structure, suggesting that some universal mechan
could be the underlying driving force in the formation a
evolution of social networks, as happens in other comp
systems@7,8#.

Apart from work related reasons, ties between individu
in any organization arise, without external influence, due
personal, political, and cultural reasons, among others.
rapid development of electronic communications provide
powerful tool to analyze the informal self-organized soc
network arising as a result of the formation of such ti
Indeed, every time an email is sent, the addresses of
sender and the receiver are routinely registered in a se
Therefore, anemail networkcan be built regarding eac
email address as a node and linking two nodes if there is
email communication between them. We take as a case s
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the email network of University at Rovira i Virgili~URV! in
Tarragona, Spain, containing 1669 users including facu
researchers, technicians, managers, administrators,
graduate students.

Bulk emails provide little or no information about how
individuals or teams interact, so to minimize their effect:~i!
we eliminate emails that are sent to more than 50 differ
recipients and~ii ! we disregard links that are unidirectiona
that is, we consider that two nodesA and B are connected
only if A has sent an email toB andB has also sent an ema
to A. With these restrictions, the network is an undirect
graph@26#.

The cumulative degree distributionP(k) of the email
network—representing the probability that a node hask or
more links to other nodes—is exponential

P~k!}exp~2k/k* ! ~1!

for k>2, with k* 59.2. This result is in contrast with recen
findings indicating that some technology based soc
networks—such as rough email networks@9#, the instant
messaging network@10#, or the PGP~pretty good privacy!
encryption network@11#—which show heavily skewed de
gree distributions, but is consistent with the proposal
Amaral and co-workers that the truncation of the scale-f
behavior in real world networks is due to the existence
limitations or costs in the establishment of connectio
@3,12#. Indeed, it seems plausible that there are costs to m
taining active social acquaintances and therefore active c
munications. However, it is relatively easy to keep ma
electronic acquaintancesopen, although most of them are
probably inactive from a social point of view.

Out of the total 1669 nodes, 1133 belong to the gia
component. The rest are isolated or, at most, connected
pairs. In the following, we focus on this giant compone
that can be characterized by statistical properties such a
clustering coefficientC50.254 and its average shortest pa
lengthd53.606@1#. For comparison, we construct a rando
network with exactly the same exponential degree distri
tion as the email network following the procedure propos
in Ref. @13# ~from now on we will call it random exponentia
©2003 The American Physical Society03-1
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network!. The clustering of the exponential network is a
proximately ten times smallerC50.028 while the average
shortest path length is very similard53.317, as happens i
small world networks@1#.

To understand the structure of the social network of
organization, we are interested in determining how individ
als interact and form groups that, in turn, interact with ea
other giving rise to higher order groups, that is, groups
groups. In other words, we want to unravel thecommunity
structure of the network. To do so we use the algorith
proposed recently by Girvan and Newman~GN! @6# to iden-
tify communities in complex networks~see Fig. 1!.

The GN algorithm proceeds as follows@6#. The between-
ness of an edge is defined as the number of minimum p
connecting pairs of nodes that go through that edge@14,15#.
The key idea is that the edges that connect highly cluste
communities have a higher edge betweenness—edgeBE in
Fig. 1~a!—and therefore cutting these edges should sepa
communities. The algorithm identifies and removes the l
with the highest betweenness in the network. After ev
removal, the betweenness of the edges is recalculated an
process is repeated until the ‘‘parent’’ network splits, produ
ing two separate ‘‘offspring’’ networks. The offspring can b
split recursively in the same way until they comprise on
one individual.

In order to describe the entire splitting process, we g
erate a binary tree in which bifurcations~white nodes! depict
communities and leaves~black nodes! represent individual
addresses of the email network@Fig. 1~b!#. At the beginning
of the process, the network in Fig. 1~a! is a single entity,
represented by node 1 in the tree. After the removal of
edgeBE, the network is split into two subnetworks, 2 and
containing nodesA–D andE–I , respectively. Since the two
offspring networks have no further internal community stru
ture all the links within each have the same betweennes
this case, one of them will be selected at random for
moval. Iterating the link removal procedure, nodes will
separated randomly one by one by the GN algorithm, in s
a way that each community will appear as a branch in
binary tree. It is important to note that central nodes, such
nodeE, will be separated last. This particular characteris
of the GN algorithm can be used with managerial purpo
to detect those persons that act like hubs in the organiza

The community binary tree for URV is shown in Fig.
Each color in Fig. 2~a! corresponds to one center of the un

FIG. 1. Community identification according to the GN alg
rithm. ~a! A simple network with two communities.~b! Binary tree
generated by the GN algorithm. Each branch in the binary
corresponds to a community in the original network and cen
nodes in a community, such asE, appear as the tips of the branche
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versity, that is, to a department or college, or to managem
units such as the office of the Rector of the university. T
properties of the tree are worth noting. First, a clear bran
ing structure emerges, with branches essentially contain
nodes of the same color. This shows that the identification
communities is successful, despite the complexity of the
teractions in the original email network. Second, the bran
ing structure is far from simple. Indeed, each branch
formed, in general, by a system of nested smaller s
branches that give rise to a complicated structure that v
ally resembles some self-similar systems in nature such
river networks@16# or diffusion-limited aggregates@17#. For
comparison, we also show the tree generated by the GN
gorithm from the random exponential network@Fig. 2~c!#. In
contrast to the tree for the URV email network, the branch
structure is almost trivial with most of the branches conta
ing only one or two nodes. This is the expected result fo
network that does not have any sort of community structu

Once the binary tree has been obtained, we look fo
quantitative characterization of the community structu
First, we consider the cumulative community size distrib
tion P(s), that is, the probability of a community having
size larger or equal tos. Each nodei of the binary tree
represents a community—or a single email address. Its c
munity sizesi is just the summation of the sizes of its tw
offspring j 1 and j 2 : si5sj 1

1sj 2
. Figure 3~a! shows how to

compute the sizes of all the communities in a simple bin
tree and the corresponding probability distributionP(s), that
is, the probability that a community has size larger or eq
to s. The community size distribution for the email netwo
is presented in Fig. 3~d!. The distribution is heavily skewed
following a power law behaviorP(s)}s2a with a50.48
betweens52 ands'100. Beyond this value, the distribu
tion shows a sharp decay and, ats'1000 a cutoff that cor-
responds to the size of the system. The power law of
community size distribution suggests that there is no cha
teristic community size in the network~up to s'100). To
rule out the possibility that this behavior is due to the co
munity identification algorithm, we also consider the com
munity size distribution for a random exponential netwo
and for a hierarchical network as proposed by Ravasz
Barabasi~RB! @18#. While the community size distribution
of the random exponential network is completely different
with essentially no communities of sizes between 2 a
100— the behavior of the RB model is similar to the scali
presented by the email network. Therefore, it seems that
self-replicating structure of RB networks, which is implic
by construction, is a reasonable first approximation to
structure of the email network.

The characterization of the community binary tree us
the cumulative size distribution has its analogy in the riv
network literature@16,20,21#. The equivalent measure is th
distribution of drainage areas, which represents the amo
of water that is generated upstream of a given point@see Fig.
3~b!#. The drainage area of a given point is the number
nodes upstream of it plus one. For a pointi with offspring j 1
and j 2, the drainage areasi is thereforesi5sj 1

1sj 2
11. The

similitude between the community size distribution of t
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current email network in Fig. 3~d! and the area distribution
of the Fella river network in Italy reported in Fig. 2 of Re
@21# is striking. The exponenta50.45 for the power law
region of this river and the average exponent for seve
rivers a ri ver50.4360.03 reported by Refs.@20,21#, respec-
tively, are very close to the currenta50.48. Moreover, the
behavior shown in Fig. 3~d! with first a sharp decay and the
a final cutoff is also shared by river networks, which a
known to evolve to a state where the total energy expendi
is minimized @20,22,23#. The possibility that communities
within organizations might also spontaneously self-organ
into a form in which some quantity is optimized is ve
appealing and deserves further investigation.

To further understand this point, it is pertinent to a
whether there are other emergent properties shared by b
To answer this question we consider a standard measur
categorizing binary trees: the Horton-Strahler~HS! index,
originally introduced for the study of river networks by Ho
ton @24#, and later refined by Strahler@25#. Consider the bi-

FIG. 2. ~Color online! Communities in the email network o
URV. ~a! Binary tree showing the result of applying the GN alg
rithm to the email network of URV. The position indicated by th
arrow represents the root of the tree@equivalent to node 1 in Fig
1~b!# and branches are depicted so that they can be clearly di
entiated. In particular, only the leaves of the tree, correspondin
email addresses, are shown, as in the zoomed detail. Colors d
different centers.~b! Same as before but without showing th
leaves. Branches are now colored according to their Horton-Stra
index ~see text!. ~c! Same as~b! for a random network. The lack o
community structure is reflected in the absence of branches, in
trast with the intricate self-similar structure of~b!.
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nary tree depicted in Fig. 3~c!. The leaves of the tree ar
assigned a HS indexi 51. For any other branch that ramifie
into two branches with HS indicesi 1 and i 2, the index is
calculated as follows:

i 5H i 111 if i 15 i 2

max~ i 1 ,i 2! if i 1Þ i 2 .
~2!

Note that the index of a branch changes when it mee
branch with higher index, or when it meets a branch with
same value and both of them join forming a branch w
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to
ict
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FIG. 3. Self-similarity in the community structure.~a! Calcula-
tion of the community size distribution for a binary tree genera
by the community identification algorithm. Black nodes repres
the actual nodes of the original graph while white nodes are
graphical representations of communities that arise as a result o
splitting procedure. NodesA andB belong to a community of size
2, and together withE form a community of size 3. Similarly,C, D,
andF form another community of size 3. These two groups toget
form a higher level community of size 6. Note that a single no
belongs to different communities, i.e., different hierarchical leve
~b! Calculation of the drainage area distribution for a river netwo
~c! Calculation of the Horton-Strahler index. In this case, there
ten branches with index 1, three branches with index 2, and
branch with index 3.~d! Comparison between the distributionP(s)
of community sizes in the email network, in the random exponen
network, and in the hierarchical network model proposed by Rav
and Barabasi~RB!, with n54 and 5 levels@18#. ~e! The standard
deviation of the bifurcation ratiosBi for the email network, an
Erdos-Renyi~ER! random graph with the same number of nod
and links@19#, a hierarchical RB network@18#, a scale-free network
as proposed by Barabasi and Albert~BA! with the same size as th
email network andm55 @2#, and the random exponential networ
The community tree of the email network is topologically se
similar with B55.8. Topological self-similarity does not hold fo
the other networks.
3-3
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higher index. In terms of communities, the interpretation
the HS index is the following. The index of a communi
changes when it joins a community of the same index. C
sider, for instance, the lowest levels: individuals (i 51) join
to form a group~or team, withi 52), which in turn will join
other groups to form asecond levelgroup ~or department,i
53). Therefore, the index reflects thelevelof aggregation of
communities. The number of branchesNi with index i can be
determined once the HS index of each branch is known.
bifurcation ratiosBi are then defined by

Bi5
Ni

Ni 11
~3!

~by definitionBi>2).
WhenBi'B for all i, the structure is said to be topolog

cally self-similar, because the overall tree can be viewed
being composed ofB subtrees, which in turn are compose
of B smaller subtrees with similar structures and so forth
all scales@17#. River networks are found to be topological
self-similar with 3,B,5 @17#.

As a measure of topological self-similarity one can calc
late the standard deviationsBi

of the bifurcation ratiosBi ,
which tends to 0 when topologically self-similarity holds.
Fig. 3~e!, we comparesBi

of the email network with that of
several model networks. We find that the community tree
the email network is topologically self-similar withB'5.8
andsB'0.05. All other network models significantly dev
ate from topological self-similarity. In particular, the hiera
chical RB model@18#, which has a similar scaling behavio
as the email network@Fig. 3~d!#, does not show topologica
y,

A

.
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self-similarity. The lack of topological self-similarity in this
case is related, paradoxically, to scale-free connectivity
tribution of the RM model, which makes thecentral units
different from the peripheral ones.

By revealing the structure of the email network, the pr
posed methodology leads us to realize that community st
ture is self-similar. Self-similarity is a fingerprint of the rep
lication of the structure at different levels of the soc
network, and could be the result of a trade-off between
need for cooperation and the costs of keeping active con
tions. Moreover, the emergence of scaling, as well as
similarity with river networks, raises important questio
about the mechanisms underlying the interactions betw
individuals. As pointed out in a recent paper@8#, the scaling
properties of river networks are ubiquitous. By using t
same argument, one can expect that the scaling behavio
obtain should be observable in any human social network
the same time, the similarity with river networks sugge
that a common principle of optimization—of flow of infor
mation in organizations or of flow of water in rivers—cou
be the underlyingdriving force in the formation and evolu-
tion of social networks.
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