
0018-9162/13/$31.00 © 2013 IEEE	 Published by the IEEE Computer Society 	 JULY 2013	 39

Cover Fe ature

Kwan-Liu Ma and Chris W. Muelder, University of California, Davis

Novel approaches to network visualization 
and analytics use sophisticated metrics 
that enable rich interactive network views 
and node grouping and filtering. A survey 
of graph layout and simplification methods 
reveals considerable progress in these new 
directions.

R elational data is one of the primary classes of 
information and appears in a wide array of 
disciplines, ranging from sociology and biology to 
engineering and computer science. Unlike spatial, 

n-dimensional, or text data, relational data consists of a 
set of entities and a network of relationships among them. 
Some networks represent abstract relationships, such as 
author influence or friendship; others represent physical 
networks, such as power distribution or routers.

With the growing popularity of mainstream network 
applications, the ability to efficiently analyze complex data 
collections has become critical. Wikipedia has millions 
of articles that form a network through cross-references. 
Facebook connects more than a billion users in an 
incredibly complex structure of friends, group invitations, 
games, advertising, video chats, and so on. These and 
similar networks continue to expand and evolve daily.

Using simple statistics to reason about the dynamics 
of such complex networks is not generally effective or 
practical. Rather, analysts are turning to visualization—
not just the passive process of producing images from 
numbers, but highly interactive methods that combine 
visual representations with network analytics to greatly 
enhance the ability to understand and characterize 
networks. Such analysis can yield important insights. 
Social network analysis, for example, can reveal patterns 
about groups of friends or popularity, and the analysis of 
a power distribution network can indicate key points for 
infrastructure improvements. 

Graph drawing, which began in the 1960s, is a field of 
research dedicated to visualizing a network’s structure. 
One of the most common and intuitive representations 
is the node-link diagram, in which nodes represent 
actors and the links between nodes represent the actors’ 
interrelationships. Although this method is relatively 
straightforward and practical for visualizing small 
networks, it can be overwhelming for large, complex 
networks. 

Time-varying networks, such as Facebook, impose 
additional challenges. A social network grows with each 
new friendship or alliance and shrinks when friendships 
grow distant or break apart. Because each node addition or 
deletion can affect larger-scale patterns, such as clusters, 
finding and understanding small changes can provide 
insights into the entire network’s evolution.
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Graph visualization and analysis are ripe for research 
innovation to address the escalating scale and complexity 
of data and information systems. New methods must 
address all aspects of network representation, from the 
fundamental problem of laying out a large graph to graph 
analytics and simplification for dynamic graphs. To work 
toward this goal, we have been identifying open problems 
and developing corresponding solutions. These efforts 
show the promise of visualization to support new forms 
of exploratory network data analysis.

GRAPH LAYOUT
One challenge in node-link diagrams is how to efficiently 

provide a node placement or layout that will yield a 
meaningful graph visualization. For simple structures, the 
system needs only a set of aesthetic choices to provide a 
useful graph—sometimes even a hand-drawn visualization 
could suffice. But for large, complex structures, effective 
layouts are harder to create, which motivates continual 
interest in graph layout algorithms as an integral part of 
visualizing complex networks. Although most traditional 
work involves developing more efficient layout methods 
for static graphs, more recent efforts have also focused 
on finding effective ways to generate dynamic graphs of 
time-varying networks.

Static graphs
Algorithms for laying out static graphs vary considerably. 

Figure 1a shows the results of a force-directed layout 
method, which arranges graphs by iteratively refining the 
positions of vertices to incrementally reduce an energy 
function. The energy function varies between different 
force-directed algorithms, but it is generally a function 
of the distances between nodes and the weights of the 
edges between them. Although force-directed layouts  are 
generally aesthetic, their algorithms do not scale well to 
large or dense graphs. Lin-log1 is an example of a force-
directed layout method.

More efficient layout algorithms use a multiscale 
approach, such as FM (fast multipole multilevel method) 
and GRIP (graphic drawing with intelligent placement).2,3 
Both of these algorithms begin by laying out a small 
approximation of the graph, and then progressively laying 
out finer approximations until they complete the entire 
original graph. Multiscale algorithms tend to need far fewer 
iterations than force-directed approaches and thus have a 
vastly superior performance.

Faster than either force-directed or multiscale layout 
methods, algebraic methods use linear algebra techniques 
instead of force calculations to calculate the layout 
directly.2,3 Algebraic methods tend to work well on regular, 
grid-like networks, but can fail to produce good layouts for 
denser real-world networks. Examples of algebraic layout 
methods include ACE (algebraic multigrid computation of 
eigenvectors), HDE (high-dimensional embedding), and 
Maxent. Figure 1b shows a graph laid out with the HDE 
method.

Other layouts gain efficiency by clustering the graph in a 
preprocessing step and then using the clustering to define 
the layout itself. This two-stage process allows the layout 
to adapt to changes extremely quickly, making it highly 
suitable for interactive visualizations. Figures 1c and 1d 
depict layouts using two such layout methods. The treemap 
layout method4 uses a hierarchical space decomposition 
to map a hierarchical clustering to the screen: the root of 
the clustering’s tree takes up the whole screen, and each 
branch recursively subdivides the screen according to the 
clustering until finally each leaf is allotted its own region. 
Each leaf represents a node, so placing each node in its 
corresponding region defines the layout. The space-filling 
curve (SFC) layout method5 uses the clustering to order 
nodes in one dimension and then applies a recursively 
defined fractal curve such as the Hilbert or Gosper curve 
to map them to the screen. 

The treemap method maps clusters directly to the 
screen, which guarantees that each node has equal 

Figure 1. Visualization approaches to lay out a static graph of website hyperlinks in a search for the word “California.” Both  
(a) a traditional force-directed layout method such as lin-log and (b) an algebraic approach such as high-dimensional 
embedding (HDE) yield an unintelligible hairball—a tangled mess of lines. Clustering-based layout algorithms, such as the 
(c) treemap and (d) space-filling curve (SFC) layouts, offer better representations of higher-level network structures. Timing is 
based on the use of a Mac Pro with a 2.66-GHz Intel Xeon CPU. 

(a) (b) (c) (d)Lin-log: 10,737 sec HDE: 0.19 sec Treemap: 0.7 sec SFC Gosper: 0.7 sec
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screen space and that clusters are clearly separated. 
However, it does not guarantee aspect ratios, which can 
yield unreadably thin clusters. The SFC method, on the 
other hand, maps clusters onto segments of a fractal 
curve, which does guarantee good aspect ratios. Both the 
treemap and SFC approaches meet common aesthetic 
criteria, such as cluster collocation and short average edge 
length. Because of their clustering basis, they work best on 
networks that form strong clusters, such as biological and 
social networks and Web hyperlinks. They do not work 
well on regular, mesh-like networks. However, real-world 
networks are scale-free and rarely form regular meshes. 

As Figure 1 shows, the times and resulting graphs are 
dramatically different across layout methods. The graph 
is modestly sized with only 6,107 nodes and 15,160 edges, 
yet lin-log took almost three hours to generate a layout, 
and the result is still a hairball. Even though HDE generated 
a layout in subseconds, the result was even less useful 
than lin-log’s. In sharp contrast, both the treemap and the 
SFC layouts depict a clearer number and relative size of 
clusters, use screen space more efficiently, and elucidate 
intercluster relationships with routed edges. 

Many visual analytics tasks for decision making require 
a rapid overview visualization, and in our results, only the 
clustering-based layout methods, such as SFC, provided 
rapid, insightful results—particularly with larger networks. 
As Figure 2 shows, relative to the GRIP and FM3 force-
directed methods, the SFC methods clearly use the screen 
space more efficiently than the other methods, and the 
clusters are more clearly distinct.

Dynamic graphs
Researchers have extensively studied the problem of 

visualizing static networks, but work on dynamic network 
visualization is still in its infancy. Any layout method to 
create a node-link diagram of a dynamic graph must 
account for both the graph topology and stability between 

time steps. The result is a tradeoff between layout quality 
and stability: a perfectly stable layout would sacrifice 
layout quality, and naively calculating ideal layouts would 
not offer stability. Many researchers refer to this stability 
problem as preserving the mental map.

Some experiments have examined the usefulness 
of preserving the mental map in dynamic graph 
visualizations. In one study,6 the results were surprising 
because the most effective visualizations were extreme 
cases—with very low or high mental map preservation—
rather than with medium preservation.

A common method for visualizing dynamic graphs is to 
animate the transitions between time steps. The result is a 
dynamic visualization, in which nodes appear, disappear, 
and move to produce a readable layout for each time step. 
An alternative is to use small multiples to statically place 
multiple time steps next to each other.7 This approach 
makes it easier to compare distant time steps but limits 
the area devoted to each time step, thereby reducing each 
graph’s legibility. An empirical study8 has compared the 
advantages and drawbacks of using animation or small 
multiples.

Another approach uses time as a dimension in the static 
visualization of dynamic graphs.9 The algorithm orders 
vertices and positions them on several vertical parallel 
lines, using directed edges to connect the vertices from 
left to right. The results display each time step’s graph 
between two consecutive vertical axes. Another method 
uses a geographical metaphor to visualize clustered 
dynamic graphs.10 However, this method uses a priori global 
clustering over time and does not handle cluster evolution.

Animation at a very large scale can be overwhelming, 
so it is necessary not only to minimize motion but 
also to stabilize animation. Recent work has produced 
two clustering-based layouts both of which achieve 
scalability far beyond what other animation methods have 
demonstrated. 

Figure 2. Layouts of the Internet’s physical connectivity at the autonomous system level with 41,928 nodes and 218,080 
edges, colored by continent. Although force-directed approaches such as (a) graphic drawing with intelligent placement 
(GRIP) and (b) the fast multipole multilevel method (FM) help arrange nodes according to connectivity and implicitly by 
country, they yield unreadable hairballs. (c,d) Clustering-based approaches, such as the SFC algorithm, clearly define groups 
of high interconnectivity, and edge bundling elucidates intercluster relationships. Times are from a Linux machine with a 
3.20-GHz Intel Core i7 960 CPU.

(a) (b) (c) (d)GRIP: 6.87 sec FM3: 40.8 sec SFC Gosper: 18.8 sec SFC Hilbert: 18.8 sec
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An incremental-clustering-based layout11 method 
starts by laying out a single time step, then incrementally 
modifies the underlying clustering over time, which 
updates the layout algorithm accordingly. The resulting 
visualization starts with the rapid generation of an ideal 
layout, but over time trades off quality to gain stability. 

Figure 3a shows the results for three time steps in 
Internet connectivity evolution. Nodes are not completely 
stationary, but node clusters move slowly and affinely as 
a coherent group.

A global-clustering-based layout method uses the whole 
time range and aims to optimally satisfy both the layout 
quality for each time step and the layout’s stability over 
time. One method extends SFC to create such a layout.12 
Rather than trying to find a single global clustering, this 
method clusters each time step independently and then 
associates clusters pairwise between neighboring time 
steps to track the clusters over time. It then orders both 
clusters and nodes globally to minimize energy functions. 
The ordered clusters and nodes define both a time-varying 

layout by mapping individual time steps to the screen with 
SFC and a static timeline by directly plotting the ordering 
against time. Because the method precalculates the entire 
ordering, analysts can use this timeline to interactively 
explore the graph not only sequentially but also by 
navigating between arbitrary time steps.

Figure 3b shows the results for the same three time 
steps portrayed in Figure 3a. The layout minimizes 
intracluster edge lengths but leaves space for nodes that are 
not in the given time steps. Because it clusters each time 
step independently, global optimization guarantees good 
layout quality properties at all times. The ordering method 
also minimizes node motion, which aids in mental map 
preservation. In this way, the approach balances quality 
and stability. 

Although both approaches have strong advantages, 
they also have drawbacks. The incremental approach 
does not guarantee that the layout is ideal for time steps 
that are distant from the initially clustered step. Globally 
optimized layouts have compacted clusters, because they 

Figure 3. Dynamic graph layout results for visualizing evolving Internet connectivity. (a) The incremental-clustering-based 
approach uses space efficiently. Motion is slow, smooth, and affine, and so is easy to follow, but quality degrades over time to 
ensure stable animation. (b) The global-clustering-based approach meets layout criteria—balanced quality and stability with 
nodes largely remaining stable, but clusters are compacted. The images are freeze frames of three time steps. Videos of the 
complete dataset of 400 time steps are available at http://vis.cs.ucdavis.edu/Videos/Computer2013.

(a)

(b)
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reserve empty space for past and future clusters. The 
global optimization’s main limitation is computational 
complexity. Cluster and node ordering in particular take a 
large amount of computation—overnight for the dataset in 
Figure 3. Current efforts aim to alleviate these drawbacks 
by combining both approaches by developing incremental 
clustering and more efficient ordering algorithms.

GRAPH SIMPLIFICATION
Even with optimizations, directly laying out an entire 

graph with tens of millions of nodes or edges does not 
always lend itself well to detailed analysis. A more practical 
and cost-effective method is to extract subgraphs from the 
overall graph or to simplify the graph according to certain 
metrics. The resulting smaller graphs are then easier to 
display and analyze quickly.

Semantic abstraction
Structural visualizations are often less effective for 

large, dense graphs. Node-link diagrams can become 
rapidly cluttered, and algorithmic layouts often result 
in hairballs. When a network contains heterogeneous 
elements and if the relationship of interest is between a 
small subset of element types, showing only the relevant 
connections can be more intuitive than a full layout. An 
ontology—a graph whose nodes represent node types 
and whose links represent association types—is useful in 
extracting such explicit relationships. Ontologies can be 
based on existing explicit relationships or connections or 
on inferences from cross-referencing external sources—for 
example, a database of node types might be the basis for 

classifying edges according to the types of their associated 
nodes (A to A, A to B, B to B, and so on).

Ontologies represent the types of actors and relations 
in a network. OntoVis uses a high-level graphical 
representation of an ontology to enhance a typical 
node-link diagram,13 providing an interface to control 
the ontological nature of heterogeneous networks and 
enable user-directed filtering to isolate subnetworks of 
interest. Figure 4 shows an OntoVis application to visualize 
a terrorist network.13

Another type of visualization that relies on the meaning 
of actors and links is based on semantic substrates14—
spatial network layouts in which node position depends 
on the values of a given node attribute. The system can 
display multiple semantic substrates simultaneously 
and connect them according to the links between them. 
Because node placement follows attribute values, not the 
network’s structure, the semantic substrate metaphor is a 
better fit for semantic queries.

Centrality sensitivity
A popular statistical metric for social and other scale-

free networks is centrality, which quantifies each node’s 
importance to network’s structure. Central nodes are often 
important hubs through which social interaction happens 
and are good indicators of individual nodes’ and clusters’ 
relative popularity. Node centrality is generally a function 
of structural variables, such as degree or, more generally, 
a function of the network’s adjacency matrix. 

Centrality sensitivity15 measures how the change of each 
node’s importance influences other nodes’ importance. As 

Figure 4. Visualization of a heterogeneous terrorist network with semantic filtering. (a) At the top is a naive force-directed 
layout of the entire terrorist network (2,374 nodes and 8,767 links), which is too dense and cluttered to be useful. At the 
bottom is a network ontology—a graph of the kinds of nodes and connections that occur in the full network—which can 
filter the visualization and reveal useful structures. (b) Visualizing the terrorist organization (blue), locations (red), and 
classification (tan) reveals which organizations are active in which regions. (c) Visualizing organizations, weapons, tactics,  
and targets reveals attack behaviors, such as Hamas’s preference to bomb civilians.

(a) (b) (c)
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such, sensitivities are good indicators of how centrality 
is distributed and how the system is likely to propagate 
network changes.

Analytical or approximated solutions compute 
sensitivities for different centrality metrics. Such sensitivity 
analysis can be helpful in interpreting visualization 
because it is adept at finding hidden relationships in 
a network that could otherwise be overlooked in direct 
visual representation.

Centrality sensitivity is useful as a metric for simplifying 
complex networks and supporting visual reasoning. The 
simplified network retains key structural properties while 
maintaining a trustworthy, readable visualization. Figure 5  
shows the use of the sign and magnitude of sensitivities 

to characterize clusters in a mobile phone user network. 
Filtering according to centrality sensitivity separates users 
into two groups and reveals that users in one group appear 
to maintain a tighter bond than in the other. 

Centrality sensitivity also reveals hard-to-find 
collaborative or competitive relations. In the uncertainty 
analysis of social networks, it helps analysts gain insight 
into the robustness of key network metrics. Figure 6 shows 
several social networks colored according to centrality 
sensitivity, with red for negative and blue for positive 
sensitivity. Figure 6a shows the Friendster network as a 
core of central nodes, many of which have a connected 
star pattern of isolated nodes. These peripheral nodes have 
a collaborative relationship (positive sensitivity) with the 

Figure 5. Sensitivity-based visualization of proximity network of mobile phone users (the MIT Reality Data). (a) A force- 
directed layout does not convey groups, except via semantic attributes (blue for Sloan school, green for MediaLab members). 
(b) Filtering according to only positive centrality sensitivities and weighing edges based on sensitivity magnitude derives a 
clear separation between two user groups, and also reveals that the Sloan members are much more tightly connected.

Figure 6. Core network visualization using centrality sensitivity. Color encoding sensitivities helps identify interaction 
types. Blue and red edges denote positive and negative sensitivity, respectively. (a) A graph of a Friendster social network 
forms a connected collection of star-shaped networks, in which links between core nodes exhibit negative sensitivity. (b) An 
astrophysics co-citation network forms a dense competitive core, with the periphery exhibiting more collaborative ties. (c) A 
network from Del.icio.us exhibits both behaviors, with a core network linking tightly connected groups.

(a) (b) (c)

(a) (b)
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core nodes because they depend on each other, but the 
ties between core nodes are more competitive (negative 
sensitivity), since an increase in any one node’s importance 
would reduce the importance of the others.

The co-citation network from ArXiv, in Figure 6b, 
contains a highly competitive clique—any increase in a 
cluster member will negatively impact the importance of 
the others. The network is in a somewhat unstable state, 
since each cluster member has a roughly equal chance of 
becoming the most important node. 

In Figure 6c, the Del.icio.us network (a website-tagging 
social networking site) exhibits collaborative clusters (top) 
as well as a competitive cluster (bottom), with a competitive 
skeleton network between them. 

When it is infeasible to fully comprehend the totality 
of a large network, particularly a dynamic network 
for time-critical applications, sampling is a common 
strategy.16 However, random sampling strategies and 
their possible biases could lead to uncertain and biased 
samples. Sensitivity-based sampling could improve 
the results of statistical sampling by both guiding the 
sampling process and giving analysts a sense of the 
results’ confidence level.

Finally, although most network analysis approaches we 
have described are top-down, visual analytics tasks such 
as visual recommendation can benefit from a bottom-up 
approach to network exploration, starting with a node or 
a tiny subset of nodes and expanding the region according 
to explicit connections to that node and those derived by 
metrics, and another work has shown that sensitivity-
based approaches can be applied to this process.17

T he explosive growth in size and complexity of real-
world networks has overwhelmed conventional 
visualization and analysis methods. Although 

new approaches to graph layout, simplification, and 
analysis can make the analysis of complex networks 
more tractable, the resulting subgraphs could still be too 
large for interactive visualization. The convergence of 
analysis tools such as centrality and clustering analysis 
and interactive visualization have led to powerful visual 
analytics solutions. 

The large scale of many dynamic networks remains a 
formidable hurdle. More effective time representations—
beyond animations and time sliders—will provide deeper 
insights into how complex networks form and evolve. 
Network modeling and clustering are fundamental to 
addressing this challenge. Research should focus on 
developing more robust and efficient temporally aware 
clustering algorithms for dynamic graphs. Good clustering 
will produce layouts that meet general criteria, such as 
cluster colocation and short average edge length, as well 
as minimize node motion between time steps. 

Unlike early systems that emphasize direct structural 
drawing, current visualization tools offer novel, interactive 
network views with the ability to filter and group nodes 
using sophisticated metrics. Semantic abstraction aids 
analysts in navigating large networks’ complex spaces. Next-
generation network analysis tools incorporating semantic 
and statistical views should help analysts better understand 
the structure of complex networks in different spaces. 
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