
Network motifs in computational graphs: A case study in software architecture

Sergi Valverde1 and Ricard V. Solé1,2

1ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
2Santa Fe Institute, 1399 Hyde Park Road, New Mexico 87501, USA

�Received 1 July 2004; revised manuscript received 3 June 2005; published 8 August 2005�

Complex networks in both nature and technology have been shown to display characteristic, small subgraphs
�so-called motifs� which appear to be related to their underlying functionality. All these networks share a
common trait: they manipulate information at different scales in order to perform some kind of computation.
Here we analyze a large set of software class diagrams and show that several highly frequent network motifs
appear to be a consequence of network heterogeneity and size, thus suggesting a somewhat less relevant role
of functionality. However, by using a simple model of network growth by duplication and rewiring, it is shown
the rules of graph evolution seem to be largely responsible for the observed motif distribution.

DOI: 10.1103/PhysRevE.72.026107 PACS number�s�: 89.75.Fb, 89.20.Ff, 87.80.Vt

I. INTRODUCTION

Many natural and artificial systems are describable as net-
works of interacting components �1–4�. The network is a
medium that allows resource sharing often involving an ef-
ficient transport of energy �metabolism, power grid�, matter
�highways, airport webs�, or information �cellular communi-
cation, Internet�. The architecture of complex networks can
be explored at different scales, from the overall properties
defined by average measures such as path length or cluster-
ing, correlations, or degree distributions to the more funda-
mental features displayed by small subsystems. In this con-
text, it has been shown that some special, small subgraphs—
so-called motifs—seem to be particularly relevant in
describing the architecture of complex networks �5�. Motifs
have been suggested to be the functional building blocks of
network complexity. Are some subgraphs more common than
others because their functional relevance?

An alternative view is that the rules of network growth
can by themselves favor some subgraphs with no special
relation to the underlying functionality. Actually, this seems
to be the case for the structure of the protein-protein interac-
tion map. In spite of the fact that proteins perform functions,
the overall architecture of the protein network is easily re-
produced by means of a simple model of node duplication
plus rewiring �6�. Such properties include scale freeness,
small-world features, and even hierarchical organization and
protomodularity �7�. Mounting evidence suggests that many
key features of complex networks �including motifs� might
be strongly tied to the global network structure �8�.

If functional constraints to network architecture have to
be considered, one particularly relevant aspect of network
complexity is associated with the presence of some underly-
ing computational process. Computation is a key ingredient
of any complex adaptive system �CAS�. By storing and pro-
cessing information, CAS’s are able to predict �and adapt to�
external fluctuations. Computation occurs in both natural and
artificial systems �9�, although the building process that cre-
ates the computational structure is different. This is actually
one of the most important points here: are the rules of de-
signed and evolved systems completely different? Biological
networks are largely originated through tinkering �10–12�:
new components are obtained by re-using old ones, mainly

by duplicating them. In spite of the apparent limitations of
such mechanisms, it allows one to discover good designs
�13�. More complex computations can be developed as the
network size is increased and new functions can emerge.

How is computation linked to network structure? Tenta-
tive answers, to be developed here, can be obtained by look-
ing at a very important class of computationally driven net-
works: software systems. They offer a unique opportunity of
exploring different levels of complexity with well-defined
functional traits. As opposed to most examples of evolving
computational networks, extensive databases storing soft-
ware evolution registers exist and involve a high degree of
detail. Here we analyze the largest data set of software maps
explored to date �83 different systems�. The main goal of our
study is to see if functionality, as opposed to network evolu-
tion, is a main constraint to the distribution of network mo-
tifs in real graphs. The paper is organized as follows. In Sec.
II an overview of the software systems analyzed here is
given. In Sec. III, the statistical patterns of network motifs in
a large set of software systems are presented and the pres-
ence of scaling relations and the size-dependent frequency of
motifs analyzed. In Sec. IV a model of duplication and re-
wiring is used in order to reproduce the structure of motifs of
a large software map. In Sec. V a general discussion is pre-
sented.

II. SOFTWARE NETWORKS

Programming languages describe software systems �14�.
Every computer program has a textual representation follow-
ing syntactic rules dictated by a programming language �15�.
The program is decomposed in a number of simpler software
entities or logical elements, which are given a unique name.
Software entities include things as data objects, instructions,
subprograms, or modules. A hierarchy or natural ordering
between software entities is prompted by modern program-
ming languages. At the lowest level, a program is viewed as
a sequence of simple machine instructions. Sequences of re-
lated instructions are enclosed in subprograms. At the highest
level, there are modules or logical containers grouping sim-
pler software entities. Often, modules are defined as func-
tional blocks but there are no strict principles driving module
composition.

PHYSICAL REVIEW E 72, 026107 �2005�

1539-3755/2005/72�2�/026107�8�/$23.00 ©2005 The American Physical Society026107-1

http://dx.doi.org/10.1103/PhysRevE.72.026107

It is useful to depict the complex structures defined in
computer programs by means of a graph �16�, where nodes
represent software entities and links represent syntactical re-
lationships between modules, subprograms, and instructions
�see Fig. 1�. In this paper, we will focus on a particularly
interesting subset of software entities: the collection of mod-
ules and their static interactions �also called software archi-
tecture�. While it is widely acknowledged that software evo-
lution depends on its architecture, very little is known about
the cause and effect relationships between design practices
and evolution outcomes �17�. In order to understand the re-
lation between structure and artificial evolution, we have en-
visaged a network model of software architecture, hereafter
called the software map or software network. Here, we show
how the evolution of computer programs can be understood
by recovering and analyzing their software networks at dif-
ferent stages of development.

Following �16,18�, Fig. 2 shows the text of an incomplete
C�� �19� computer program �see Fig. 2�a�� and its corre-
sponding software map �see Fig. 2�b��. The program text
reads from left to right and top to bottom. The software
network �= �V ,L� of this C�� program is recovered by
means of a very simple lexical analysis. First, we identify the
vector of all module names �also class in C��� given
by W= �wi�= �point,chessmen,point,move,point,point,
pawn,chessmen,move�. Name ordering is important when
recovering module dependences �see below�. Names wi that
appear in the head of a module declaration provide the set of

network nodes V= �vi�. These names �hereafter called mod-
ule definitions� are easily identified because they are pro-
ceeded by the C�� keyword class. Remaining names are
called module references. In this example, we have four �N
= �V�=4� unique module definitions: point �w1�, chessmen
�w2�, move �w4�, and pawn �w7�. This defines a mapping
from names wk�W and network nodes vi�V in the software
network.

The design of any nontrivial function involves the inter-
action of at least two modules �20�. Static module interac-
tions can be depicted from relative positions of names in W.
Let us assume that wk� �w1 ,w2 ,w4 ,w7� is a module defini-
tion associated with node vi and wl� �w1 ,w2 ,w4 ,w7� is a
module reference associated with node v j. A directed link
�vi→v j��L signals a dependence from module definition wk

to module reference wl. Link directionality reflects name or-
dering in the C�� program—that is, k� l. There are two
types of module dependences: association �also “has a” rela-
tionship� or inheritance �or “is a” relationship�. The purpose
of these dependences is to establish a logical organization of
the system. However, our analysis is centered an the study of
topological patterns and does not take into account detailed
relationship semantics. In an association, referenced node v j
is nested in the C�� block of module vi. This block is
always bracketed by the symbols �and�. In an inheritance,
referenced node v j always follows the C�� sequence: public
after the referencing node vi �see Fig. 2�a��. Repeated links
are not considered in the following analysis.

Software maps capture the topology of complex software
systems. In particular, these maps provide a quantitative ap-
proach to the evolution of technology. They are actually
evolving entities and somewhat inhabit an intermediate zone
between computing machines and neural structures. We have
shown software networks to be scale free and small world
�16,18,21�. Software networks can be described under a sta-
tistical physics perspective.

III. SOFTWARE MOTIFS

In this section, we extend our previous topological studies
by analyzing software networks at the level of network sub-
graphs, or subsets of connected nodes in a network. The
statistics of subgraphs provides important information about
network structure. It has been claimed that overrepresented
subgraphs �i.e., motifs� signal key building blocks of net-
works �5�. This might be the case for regulatory networks,
where specific subgraphs �i.e., feed-forward loops� perform
information processing functions �22�. A particular class of
subgraphs, cycles, have received considerable interest. Cycli-
cal dependences in software maps imply that a module is
related to itself, which may be acceptable, unacceptable, or
required �23�. Ambiguity in the functional meaning of cycles
suggests that subgraphs in software graphs are not strictly
related to well-defined functions. The ubiquity of subgraphs
in software networks seems to be a consequence of top-down
mechanisms of software organization and not a consequence
of selective pressures.

Following the method outlined in previous section, we
have recovered and analyzed a large dataset of software

FIG. 1. Examples of common network motifs with n=4 ele-
ments found in software graphs. Here each node is a class and
arrows indicate static dependences among classes �see text�.

FIG. 2. �a� A piece of C�� code from a chess-playing program
and �b� the corresponding software map or network model display-
ing the collection of modules and their logical dependences. The
only information required to recover the software map is the set of
module names �highlighted in bold in �a�� and their relative loca-
tions in the C�� program �see text�. Notice how nodes are labeled
with their names and links are decorated with relationship type.

S. VALVERDE AND R. V. SOLÉ PHYSICAL REVIEW E 72, 026107 �2005�

026107-2

maps ��� from 83 reverse-engineered C�� software sys-
tems. A given graph can be characterized by a degree se-
quence. For the whole graph � each node has a degree se-
quence given by the in-degree list �Ki� and the out-degree list
�Ri� �with i=1, . . . ,N�. The lists would be completed by the
so-called mutual edges �Mi�—i.e., cases where there is a pair
of edges in both directions between two nodes. For each
subgraph �i�� of size n �here n=3,4�, another degree se-
quence would be provided by two new lists, now �kj� and �rj�
for the in- and out-degrees, respectively. For example, for the
left subgraph in Fig. 1, we would have �kj�= �0,1 ,1 ,2� and
�rj�= �2,1 ,1 ,0�.

Network motifs are defined in terms of subgraphs which
appear much more often than expected from pure chance.
Specifically, they occur with a high frequency compared with
the expected from an ensemble of randomized graphs with
identical degree structure �5�. The random networks are gen-
erated by means of the switching rule. For every pair of links
i→ j and u→v in the original software network, we add the

pair i→v and j→u in the randomized network. This rule
keeps intact the in- and out-degree sequences but destroys
degree-degree correlations. The statistical significance of a
given subgraph �i is described by its Z score �5�, defined as

Z��i� =
Nreal��i� − �Nrand��i�	

��Nrand��i��
. �1�

Here Nreal��i� is the number of times the subgraph ap-
pears in the network, whereas �Nrand��i�	 and ��Nrand��i��
refer to the mean and standard deviation �SD� of its appear-
ances in the randomized ensemble, respectively. In order to
be significant, it is required that �Z��i���2. When Z��i�
�2 �Z��i��−2� the motif �antimotif� is considered to be
more �less� common than expected from random. In Fig. 3
the results from our analysis are shown for some typical
software networks. A handful of these subgraphs appear to
be present in all software systems analyzed and also in both
electronic circuits and biological networks involving compu-

FIG. 3. Network motifs with n=3,4 elements found in software graphs. The numbers of node and edges for each network are shown. The
most frequent motifs were classified in distinct rows for each type of system: medium software systems, large software systems, gene
regulatory nets, neural networks, and digital electronic circuits. For each motif, we display the number of occurrences in the network �Nreal�,
the number of occurrences �Nrand±SD� in a set of 100 randomized network versions, and a qualitative measure of its statistical significance
as given by the Z score �see text�. Medium and large software networks share a large amount of motifs but we found larger variability in the
medium data set. A remarkable difference is motif 2190 �the last motif in the second row�, which appeared only in the context of large
software systems.

NETWORK MOTIFS IN COMPUTATIONAL GRAPHS: A… PHYSICAL REVIEW E 72, 026107 �2005�

026107-3

tation. This is the case of Bi-parallel �S904�, Bi-fan �S204�,
the feed-forward loop �S38�, and its close variants �such as
S2186 and S408�. Such a common point might be easily
interpreted in functional terms: similar subgraphs are abun-
dant because they are selected or chosen to perform a given
function or task. As shown below, no evidence from statisti-
cal patterns supports such view.

Assuming sparse graphs ��K	�N�, the probability of a
given subgraph �i can be estimated. Following Itzkovitz
et al., �24� we can see how this is calculated using the first
subgraph in Fig. 1. Here we have �Kj�= �2,1 ,1 ,0� and �Rj�
= �0,1 ,1 ,2�. The idea is to compute the different probabili-
ties associated with each directed edge linking all pairs of
nodes. For example, the probability of having a directed link
from node 1 to node 2 �for K1R�N�K	� is approximately

P�1 → 2� =
K1R2

N�K	
, �2�

which can be interpreted as follows �24�: we perform K1
attempts for the first node to connect to the target node with
a probability R2 /N�K	. Similarly, we would have

P�1 → 3� =
�K1 − 1�R3

N�K	
�3�

being the approach used for all edges. The average number
of appearances of �i is finally computed by averaging.
Itzkovitz et al. �24� have shown that the average number of
appearances �G	 of a given subgraph is given by a product of
moments of different orders of the in-degree, out-degree, and
mutual degree distributions:

�G	
 Nn−ga−gm�K	ga�M	gm�
j=1

n �
Ki

kj
�
Ri

rj
�
Mi

mj
��

i
, �4�

where ga and gm are the number of single and mutual edges.
The approximation assumes uncorrelated, sparse networks
��K	�N�. Both conditions are met by software maps �25�.
These mean-field quantities can be used as a null model es-
timate of the number of motifs and, eventually, to detect
stray, significant deviations form randomness. Since different
motifs are found in different systems �5�, they can actually
allow us to identify the basic functional blocks for a given
class of networks.

By exploring our collection of software graphs, we deter-
mined �G	 for real nets �indicated as Nreal in Fig. 2� and
compared them to Nrand. Here software maps with a size N
�10 have been analyzed. Two groups have been chosen,
involving medium-sized graphs �N�300� and large graphs
�N�300�. The previous set is compared with results from
other networks involving computational tasks. Here previous
results for both gene and neural networks are also shown for
comparison �data from �5��. The reason for using biological
networks as a reference system is twofold. First, the chosen
systems are known to perform computational tasks �or can be
described by means of an equivalent computational circuit�.
The second is that it has been conjectured that both natural
and artificial networks might share some commonalities re-
lating the mechanisms that shape their evolution �12�. Com-

mon features might reflect common functional traits, but also
�as shown below� common rules of graph evolution with no
special functional meaning.

In order to explore the question of how relevant the over-
all network structure is in conditioning the frequency of
given subgraphs, we should consider the global structure of
the network. The first approximation is to consider the de-
gree of heterogeneity as provided by the distribution of links.
Software systems have a well-defined scale-free indegree
distribution

Pi�k� =
�i − 1

k0
1−�i

�k + k0�−�i, �5�

with �i
2. A mean value ��i	=2.09±0.05 has been obtained
by averaging over all the systems studied here. The distribu-
tion of scaling exponents is strongly peaked around �i=2.
The out-degree distribution Po�k� is much steeper and seems
better described by a broad scale distribution, not far from
the exponential limit. This is actually the opposite situation
considered in �24� but is not difficult to show that it is es-
sentially symmetric in the theoretical treatment.

For the regime considered here, it was shown that �G	
follows a scaling law

�G	
 N�. �6�

Specifically, for a given pair �n ,g� and a given scaling expo-
nent, we have

�G	
 Nn−g+s−�i+1, �7�

where s is the maximum in-degree for our case. This scaling
is actually valid for 2��i�s+1.

Four examples of the observed scaling laws are shown in
Fig. 4 for different software motifs. Using Eq. �3� the ex-
pected number of times a given motif appears would scale as
�G	
Ns+1−�i and using the scaling exponent �i

�2.09±0.06 a scaling law �G	
N� would be predicted for
uncorrelated, sparse graphs. Here we use our set of systems1

whose size will be indicated as ni �i=1, . . . ,83� �number of
nodes of each graph�. For convenience, we order the systems
by increasing size �i.e., ni�ni+1�. If G�ni� is the number of
times a given subgraph appears in the ith system �of size ni�,
we should expect a scaling relation G�ni�
ni

�. In order to
reduce the noise level we will use the cumulative distribution

Gcum�N� = �
ni	N

G�ni� . �8�

The cumulative distribution should scale as G
N�c with
�c��+1. As shown in Fig. 4, the predicted scaling is recov-
ered from real data, thus indicating that the average trends
are consistent with the expectation from random scale-free
networks. It confirms the validity of the prediction of
Itzkovitz et al.�24� and its agreement with a set of real net-
works. This agreement is an interesting result, particularly if

1Although a total of 83 systems have been used, the presence of a
specific subgraph is size dependent. Not all systems exhibit all sub-
graphs: for small software maps some subgraphs are absent.

S. VALVERDE AND R. V. SOLÉ PHYSICAL REVIEW E 72, 026107 �2005�

026107-4

we remember that this is a designed system to perform given
functions. The fact that we obtain the scaling law expected
for the random, scale-free graph reveals that the observed
scaling in motif abundances are a consequence of top-down
constraints derived from graph evolution.

IV. DUPLICATION-BASED EVOLUTION

The topology of software architecture emerges from de-
signed evolution. On top of the process, there must be a basic
building plan towards a final function or set of functions. The
engineer foresees the outcome of its work. But there are a
number of strong constraints no less important and operating
through the software building process. On the one hand,
modular structures are shaped through parallel paths of evo-
lution. Different blocks will be involved in more specific
subfunctions. On the other hand, increased complexity leads
to conflicts between different subparts. This is reflected, for
example, at the topological level: small software maps tend
to display tree structure, whereas larger systems typically
display much more complex patterns �16�. The common
overall structure detected in software graphs in terms of the
degree distribution �and other average properties� suggests
that the final topological patterns might be strongly con-
strained.

We conjecture that the abundance of subgraphs in soft-
ware networks relates to universal mechanisms of network

growth underlying their evolution. Real software maps tend
to display motif generalizations or subgraphs having an
structure comprising many replicas of the four motifs ob-
served here. These structures are highly redundant. This sug-
gests a very simple duplication-based mechanism of sub-
graph generation. New modules depend upon other modules
in order to provide useful functionalities. And it seems rea-
sonable to assume that similar modules will share a large
number of module dependences. In a related software engi-
neering study �26�, structural similarities in C�� software at
the module �class� level have been analyzed. They have
found quantitative evidence of structural duplications. How-
ever, they did not provide any model explaining the origin of
duplications.

Figure 5 shows a detailed example illustrating how top-
down duplication works in software development. Imagine
we want to add a new software module representing the
queen, in the previous chess-playing program �see Fig. 2�a��.
First, we will add a new module declaration, which is con-
veniently named queen �see Fig. 5�a��. Because a queen is a
type of chessman, it seems reasonable to make this module
depend upon the same modules referenced by similar mod-
ules, which in this case is the pawn. By using the pawn
module and its neighborhood as a template, we add an inher-
itance relationship from the queen to the chessman �see Fig.
5�b��. Duplication is completed with the addition of a col-
laboration relationship from queen to move �see Fig. 5�c��.
Comparison between final network �see Fig. 5�c�� with the
initial network �see Fig. 2� reveals a new biparallel subgraph
and twice the number of bifan subgraphs.

FIG. 4. Scaling in the number of appearances of a given motif
against network size. Here four common motifs �each indicated�
have been considered over the sample set �24�. Here we have S904
with n=4, g=4, and s=2; S472, with n=4, g=5, and s=2; S206,
with n=4, g=5, and s=2; S2186, with n=4, g=4, and s=3. The
predicted exponents �using the average scaling exponent for the
in-degree distribution �i�2.1� would be ��S904�=0.9, ��S472�
=��S206�=0.1, and ��S2186�=2.1, respectively. Using the cumu-
lative number of graphs, Gcum �see text�, we obtain �c�S904�
=1.86±0.16, �c�S472�=0.97±0.07, �c�S206�=1.18±0.17, and
�c�S2186�=3.12±0.11, in good agreement with the predicted val-
ues. The fit was made using least squares on a log-log scale.

FIG. 5. From �a� to �c�, an illustration of the duplication mecha-
nism in software map evolution. Time flows from top to bottom.
Here, a new module queen is introduced by cloning the links of the
similar module pawn. Every stage displays the evolving C�� pro-
gram �right� and its corresponding software network �left� recon-
structed by the method described in Sec. III. New text is enclosed in
a box. Note how duplication of links in the software map is parallel
to duplication of code in the C�� program.

NETWORK MOTIFS IN COMPUTATIONAL GRAPHS: A… PHYSICAL REVIEW E 72, 026107 �2005�

026107-5

An example of this process taking place in real software
development is shown in Fig. 6. Here a given subsystem
inside a growing software graph is displayed at different de-
velopment stages. Duplication of nodes seems to be at work,
as well as further removal of many links associated with a
given hub. From c to d a duplication of the hub involving
many incoming links has taken place �together with some
further node addition�. From d through i, it is evident how a
large number of new classes were added by copying the pat-
tern of single nodes connected to two central hubs. There is
extensive rewiring in some stages, such as in f , where the
lower hub losses a large fraction of in-links. Moreover, there
is also the addition of new connections between existing
nodes �see h→ i�. The whole sequence spans 1 year of de-
velopment. The main observation from this example �which
is a typical one� is that node duplication plus rewiring, par-
ticularly link removal, is widespread. This is also the case in
the evolution of cellular networks �6�.

Examples like the previous one suggest that duplication-
divergence growth is the cause of the observed subgraph
abundances in software maps. This hypothesis can be tested
by comparing the distribution of subgraphs in real networks
with those obtained with a stochastic model of network
growth based on asymmetric duplication-divergence rules,
previously described in �6�. First, an initial random �or back-
bone� network of m0�N nodes is created. This random
graph is generated by the addition of nodes with degree k0
=2, every link pointing to a random target node �27�. This
backbone posses a treelike structure �as occurs with software

maps at the beginning of their evolution�. Starting from this
backbone, we apply the following rules at each iteration of
the model.

�i� Duplication. A randomly chosen target node v is
cloned, and the new node w attaches to all the neighbors of
the target node.

�ii� Divergence. For each pair of original and redundant
links remove one of them with probability
.

�iii� Cross linking. In addition, the target and new node
are linked �w→v� with probability �. This rule is important
in order to generate triads or 3-subgraphs.

In spite of the simple set of rules implicit in the duplica-
tion model, the frequencies of subgraphs obtained from our
in silico system are remarkably close to those seen in their
real counterparts. In Fig. 7, we have compared the concen-
tration of 4-subgraphs expressed in various software net-
works and the concentration of 4-subgraphs predicted with
the duplication-based evolution model. These plots were ob-
tained with the following method. We generate 400 graphs,
100 for each of four different software networks: Blender,
Filezilla, GTK, and Exult �28�. Each synthetic graph has the
same number of links L and number of nodes, N, as mea-
sured in the corresponding software map and no further con-
straints are imposed. The parameter space is sampled uni-
formly. Once the synthetic networks are obtained, we
perform a 4-subgraph census by counting the number of ap-
pearances of each 4-subgraph �i in the model and in the
synthetic network. Notice that we do not test for statistical
significance �as in the motif analysis�. Instead, our compari-
son test is based solely on raw subgraph counts. In order to
compare the two systems, the raw number of subgraphs of
size 4 is computed and the concentration C of subgraphs
evaluated. Here, the concentration is simply the number of
appearances of the 4-subgraph over the total number of
4-subgraphs found.

In Fig. 7, each point represents the pair
�Cobserved ,Cpredicted� of observed and predicted concentrations
for given 4-subgraph �i. Specifically, we display the set of

FIG. 6. A real instance of software network growth from a well-
defined subsystem of Prorally �16� showing duplication. Evolution
goes from top to bottom and left to right. Only the largest connected
component is displayed here. The figure shows how the target hub
in �c� has been duplicated in �d� �both nodes highlighted with a
dotted box�. Many duplicated nodes involve less connected targets
�see �g� and �h��.

FIG. 7. Comparison of observed and predicted �from a duplica-
tion model� 4-motif concentrations for �a� Blender, �b� Filezilla, �c�
GTK, and �d� Exult �here concentrations are rescaled by �10−3�.
The exponents for the least-squares fit are �a�
=0.94±0.12, �b�

=0.92±0.13, �c�
=0.96±0.11, and �d�
=1.14±0.12, respectively.

S. VALVERDE AND R. V. SOLÉ PHYSICAL REVIEW E 72, 026107 �2005�

026107-6

pairs and the power law fit Cpred
Cobs

 . Despite fluctuations,

the simple duplication model presented here predicts reason-
ably well the concentration of common software network
motifs: the value of the exponent
 is reasonably close to 1 in
all cases. This is remarkable, given the oversimplification
considered here and given the limited constraints imposed to
the selected model graphs to be compared with the real ones.
The error bars grow as less common subgraphs are used. If
we restrict ourselves to C�10−3, the exponent
 becomes
much closer to 1. Specifically, we obtain now �a�

=0.96±0.11, �b�
=0.97±0.10, �c�
=0.98±0.12, and �d�

=1.06±0.18, respectively. Consistently with previous work
�8�, less common subgraphs are typically more dense �have
more links�. In Fig. 8 an example of this correlation is shown
for Exult. Using a frequency-rank plot of 4-subgraphs, we
can see that subgraphs with high frequencies have few links
whereas higher ranks �small frequencies� are associated with
dense subgraphs.

V. DISCUSSION

In this paper we have analyzed the statistical patterns of
network motifs in a large set of software diagrams. Software
maps have been previously shown to be scale free and dis-
play small-world behavior �16,18,21� but no previous analy-
ses focused on the small-scale architecture. The main goal of
our study is to explore the relevance of graph evolution in
relation with true functionality. Our study actually suggests
that dynamical rules, with little relation to underlying func-
tional constraints, largely determine the frequency of motifs
in software graphs.

By using recent theoretical and numerical methods to
measure and characterize network motifs, we have found the
following.

�i� A number of network motifs are obtained, the most
common being shared with other �natural� systems involving
computational traits, such as genetic and neural networks.

�ii� The number of appearances of a given network motif
scales as �G	
Nn−g+s−�i+1, in agreement with previous cal-
culations for random graphs with scale-free degree distribu-
tions. This result is supported by previous observations of the
uncorrelated character of software maps.

�iii� Evidence from software evolution suggests that du-
plication and rewiring, as occurs with some cellular net-
works, might play a key role in shaping software maps. Us-
ing a previous model of network growth by duplication and
diversification, it has been shown that it fits rather well the
frequencies of the appearance of network motifs.

Previous studies have proposed the idea that network mo-
tifs seem to define the minimal, meaningful building blocks
of network complexity. Perhaps not surprisingly we often
find them as the basic structures associated with specific
functional traits, from computation to pattern formation. The
former is exemplified by feed-forward loops, a three-element
motif found in genetic regulatory systems �22,29�. The latter
is actually a particularly relevant example. However, since
the statistical distribution of network motifs involves dealing
with large numbers of different subgraphs, the question of
how motifs in general might reflect functional traits requires
the formulation of appropriate null models of graph evolu-
tion. Such models must ignore any functional trait in order to
test the possibility that the global properties of network
structure �such as graph heterogeneity� might strongly influ-
ence what we should expect.

The model chosen here has been a duplication-rewiring
one �6�. These models have been shown to generate hetero-
geneous graphs with many properties close to relevant bio-
logical systems such as protein-protein interaction maps.
Network heterogeneity is largely due to effective preferential
attachment. Additionally, the rules of duplication strongly
bias the types of motifs to be formed towards some special
subsets. The final consequence is that the patterns of network
motifs generated by the duplication model might be able to
explain �in statistical terms� the observed abundances of mo-
tifs, with no further requirement of functional constraints.
The fact that biological systems, also involved in performing
computations, have common motifs might support this view.
Although sharing common motifs seems to call for common
functionalities, it is important to remember that biological
structures are largely generated through tinkering �10,11�.
Protein interaction networks grow by gene duplication, and
neural networks also experience increases of cell numbers
together with wide synaptic changes. Perhaps the common
traits are a by-product of the common tinkered evolution
based on extensive reuse and copy of available structures.

One final comment concerns with the common subgraphs
also shared by digital circuits. They are not obtained, strictly
speaking, through a process of duplication and rewiring. Al-
though the way complex circuits are built does include some
amount of reuse,2 considerations involving low cost in links
are of fundamental importance. In spite of such constraints, it
has been shown that electronic circuits have small-world
structure and are also highly heterogeneous �30�. Previous
work seems to indicate that optimal design towards efficient

2As circuit complexity increases �both in terms of number of com-
ponents and computational tasks� it becomes more difficult to de-
sign from scratch choosing sets of small gates and building optimal,
low-cost circuits. Predefined gates involving well-known �and
sometimes complex� input-output functions are widely used and
assembled together. In that sense, some amount of re-use is at work.

FIG. 8. Frequency-rank distribution of network subgraphs in a
software network ���. Here the most frequent subgraph has rank 1,
the second has rank 2, etc. The frequency P�r� of a subgraph with
rank r decays rapidly with subgraph rank. An interesting feature is
that most common subgraphs are sparser than less common ones,
which are more dense.

NETWORK MOTIFS IN COMPUTATIONAL GRAPHS: A… PHYSICAL REVIEW E 72, 026107 �2005�

026107-7

communication at low cost can generate scale-free, heteroge-
neous architectures �31,32�. Such result suggests again that
network heterogeneity might pervade motif abundances �33�.

ACKNOWLEDGMENTS

We thank Maggie Fitzgerald, Frankie Dunn, and Eddie
Scrap for useful input. We also thank Shalev Itzkovitz for a

careful reading and comments on an earlier version of the
manuscript. The analysis of network motifs has been done
using available free software from Uri Alon’s Lab �seehttp://
www.weizmann.ac.il/mcb/UriAlon/index.html�. This work
has been supported by Grant No. FIS2004-05422 and by the
EU within the 6th Framework Programme under Contract
No. 001907, “Dynamically Evolving, Large Scale Informa-
tion Systems” �DELIS�.

�1� S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks:
From Biological Nets to the Internet and WWW �Oxford Uni-
versity Press, New York, 2003�.

�2� R. Albert and A. L. Barabási, Rev. Mod. Phys. 74, 47 �2002�.
�3� M. E. J. Newman, SIAM Rev. 45, 167 �2003�.
�4� S. Bornholdt and G. Schuster, Handbook of Graphs and Net-

works, edited by �Wiley-VCH, Berlin, 2002�.
�5� R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,

and U. Alon, Science 298, 824 �2002�.
�6� R. V. Solé, R. Pastor-Satorras, E. D. Smith, and T. Kepler,

Adv. Complex Syst. 5, 43 �2002�; A. Vazquez, A. Flammini,
A. Maritan, and A. Vespignani, Complexus 1, 38 �2003�; R.
Pastor-Satorras, E. D. Smith, and R. V. Solé, J. Theor. Biol.
222, 199 �2003�; J. Kim, P. L. Krapivsky, B. Kahng, and S.
Redner, Phys. Rev. E 66, 055101 �2002�; K.-I. Goh, B. Kahng,
and D. Kim, e-print q-bio.MN/0312009, v2; W. Banzhaf and P.
Dwigth Kuo, J. Biol. Phys. Chem. 4, 85 �2004�.

�7� R. V. Solé and P. Fernandez �unpublished�. See also R. Gui-
mera, M. Sales-Pardo, and L. A. N. Amaral, Phys. Rev. E 70,
025101 �2004�.

�8� A. Vázquez et al. Proc. Natl. Acad. Sci. U.S.A. 101, 1794
�2004�.

�9� B. Hayes, Am. Sci. 89, 204 �2001�.
�10� F. Jacob, Science 196, 1161 �1976�.
�11� D. Duboule and A. S. Wilkins, Trends Genet. 14, 54 �1998�.
�12� R. V. Solé, R. Ferrer, J. M. Montoya, and S. Valverde,

Complexity 8, 20 �2002�.
�13� U. Alon, Science 301, 1866 �2003�.
�14� A. V. Aho, Science 303, 27 �2004�.
�15� A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,

Techniques and Tools �Addison-Wesley Longman, Boston,
1986�.

�16� S. Valverde, R. Ferrer-Cancho, and R. V. Solé, Europhys. Lett.
60, 512 �2002�.

�17� C. F. Kemerer and S. Slaughter, IEEE Trans. Software Eng.
25, 493 �1999�.

�18� S. Valverde and R. V. Solé �unpublished�.
�19� B. Stroustrup, The C�� Programming Language �Addison-

Wesley, Reading, MA, 1986�.
�20� E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns Elements of Reusable Object-Oriented Software
�Addison-Wesley, New York, 1994�.

�21� C. R. Myers, Phys. Rev. E 68, 046116 �2003�.
�22� S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, Nat. Genet.

31, 64 �2002�.
�23� J. Lakos, Large Scale C�� Software Design �Addison-

Wesley, New York, 1996�.
�24� S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, and U. Alon, Phys.

Rev. E 68, 026127 �2003�.
�25� All software maps analyzed here �and others studied by other

authors� have been shown to be sparse. Correlations have been
also analyzed in R. V. Solé and S. Valverde, in Complex Net-
works, edited by E. Ben-Naim, H. Frauenfelder, and Z. Toroc-
zkai, Lecture Notes in Physics �Springer, Berlin, 2004�, pp.
169–190. Using statistical measures derived from information
theory, it was shown that software maps are considerably un-
correlated.

�26� F. Fioravanti, G. Migliarese, and P. Nesi, in Proceedings of the
23rd International Conference on Software Engineering
(ICSE’01), IEEE, May 12–19, Toronto, 2001, edited by Hausi
A. Müller �IEEE, New York, 2001�.

�27� D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. New-
man, and S. H. Strogatz, Phys. Rev. E 64, 041902 �2001�.

�28� The source code is available at the following web sites: http://
www.blender.org �Blender�, http://filezilla.sourceforge.net
�Filezilla�, http://www.gtk.org �GTK�, and http://
exult.sourceforge.net �Exult�.

�29� S. Mangan and U. Alon, Proc. Natl. Acad. Sci. U.S.A. 100,
11980 �2003�.

�30� R. Ferrer, C. Janssen, and R. V. Solé, Phys. Rev. E 64, 046119
�2001�.

�31� R. Ferrer and R. V. Solé, in Statistical Physics of Complex
Networks, edited by R. Pastor-Satorras, M. Rubi, and A. Diaz-
Guilera, Lecture Notes in Physics �Springer, Berlin, 2003�, pp.
114–125.

�32� R. V. Solé and S. Valverde, in Complex Networks, edited by E.
Ben-Naim, H. Frauenfelder, and Z. Toroczkai, Lecture Notes
in Phyics �Springer, Berlin, 2004�, pp. 169–190.

�33� H. B. Fraser, A. E. Hirsch, L. M. Steinmetz, C. Scharfe, and
M. W. Feldman, Science 296, 750 �2002�.

S. VALVERDE AND R. V. SOLÉ PHYSICAL REVIEW E 72, 026107 �2005�

026107-8

