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Abstract

Relational data offer a unique oppatunity for improving
the dasdficaion acaragy of statisticd models. If two
objeds are related, inferring something abou one objed
can aid inferences abou the other. We present an iterative
classficaion pocedure that exploits this charaderistic of
relational data. This approach uses smple Bayesian
classfiers in an iterative fashion, dynamicdly updating
the atributes of some objeds as inferences are made @out
related oljeds. Inferences made with high confidence in
initial iterations are fed bad into the data and are used to
inform subsequent inferences abou related oljeds. We
evaluate the performance of this approach on a binary
classficaion task. Experiments indicae that iterative
classfication significantly increases acaracy when
compared to a single-passapproach.

I ntroduction

The structure of relational data presents a unique
oppatunity to use knowledge &ou one objed to inform
inferences abou related ohjeds. The goal of this work is
to explore how conventional techniques for constructing
and wsing classfication models can be used in new ways
to exploit this oppatunity. Spedficdly, we investigate
using simple Bayesian classfiersin an iterative fashion to
improve dasdficaion acarracy by exploiting relational
information in the data.

The hypahesis underlying this approach is that if two
objeds are related, inferring something abou one objed
can assgst inferences abou the other. We cdl this
approadh iterative classification. Inferences made with
high confidence in initial iterations are fed bad into the
data to strengthen inferences abou related oljeds in
subsequent iterations. Experimental evidence shows that
iterative dassfication leads to a significant increase in
clasdficaion acaracy when compared with a single-pass
approach. This suggests that there ae distinctive
charaderistics of relational data that can be used to
improve dassficaionacarracgy.

Simple Bayesian classfiers (SBCs) take traditional
attribute-value data & inpu. In order to use SBCs with
relational data, we flatten the data first by cdculating
intrinsic and relational attributes abou individual objeds.
However, we maintain a relational representation d the

data and flatten dyremicdly only when needed by the
clasdfier. Retaining the relational representation makes it
possble to extrad data, perform a series of cdculations
and then feed the results badk into the relational structure
for use in future cdculations. The aility to perform
iterative cdculations in this manner is one of the benefits
of maintaining a relational data representation. For
example, some measures of centrality in social network
anaysis (Wassrman and Faust 1994 can ony be
cdculated in such an iterative fashion. Kleinberg's Hubs
and Authorities algorithm for Web searching (1998 aso
usesiterative cdculationsin this manner.

Relational Classification

Relational data sets present a spedal oppatunity for
improving clasdfication. The oppatunity exists if, when
two oljeds are related, inferring something abou one
objed can help youinfer something abou the other. For
example, if two people jointly own a business and ore of
them is identified as a money launderer, then it may be
more likely that the other is aso invaved in money
launcering. The aility to exploit assciations among
objeds in this manner has applicaions in many fields
with relational data, including epidemiology, fraud
detedion, eclogicd analysis and sociology.

A relational classficaion technique, which uses
information implicit in relationships, shoud classfy more
acarately than techniques that only examine objeds in
isolation. Relational classficaion techniques could be
particularly useful in damains with abundant information
abou the relationships among obeds but only limited
information abou the intrinsic properties of those objeds.
For example, relational classfication might be gplied to
identify patential money-laundering operations based on
bank depaosits and business connedions (Jensen 1997%. In
such a situation, the eistence of an employee making
large cah deposits for more than ore businessgives littl e
information as to the legitimacgy of those businesses.
Many service and retail companies have high vdumes of
cash sales and it's not uncommon for a person to be
employed by more than ore wmpany. However, if one of
the businesses is discovered to be afront company for
money laundering, then the related businesses are more

J. Nevilleand D. Jensen (2000). Iterative dassficaionin relational data. Proceedings of the AAAI 2000 Workshop Learning Statistical

Models from Relational Data. AAA | Press pp. 42-49



likely to be front companies as well. In this case, the
relationship provided by a common depositor is more
useful in the mntext of knowledge @ou the related
companies.

There ae multi ple ways to approach clasdficaionin a
relational context. One gproac ignaes related oljeds
and bulds classfiers based only on the properties of an
objed in isolation. Ancther approach looks at the
properties of both the objed and its related oljeds in a
static manner, by taking a snapshat of the relational
context at some time prior to classficaion. A third
approach  uses properties of related obeds and
dynamicaly updates thase properties as predictions abou
related ohjeds change. Iterative dasdficaion wses the
latter approadh, applying SBCs in a dynamic way to fully
leverage the structure of relational data.

For example, in a data set we describe below, a
relational data structure represents companies, their
subsidiaries, corporate stockhoders, officers and baard
members. Companies are linked indiredly through
stockhalders and through pople serving simultaneoudy
on several boards (see figure 1). Such an interlocking
structure dlows the aedion d both intrinsc and
relational  attributes.  Intrinsic  atributes  reoord
charaderistics of objeds in isolation — for example,
company type or officer salary. Relational attributes
summarize daraderistics of one or more related ohjeds
— for example, a cmpany’'s number of subsidiaries or
the maximum salary of any bcard member.

Relational attributes fall into two categories which we
will cdl satic relational and dynamic relational. Any
intrinsic atribute has the potential to be predicted by an
SBC model; from the same mpany data we oould
predict any o the intrinsic atributes mentioned above.
Static relational attributes use known intrinsic atributes of
related oljeds and as sich they can be computed withou
the neal for inference The values of static relational
attributes remain constant over the @use of
clasdficaion. Dynamic relational attributes use inferred
intrinsic atributes of related oljeds © they require that at
least some related oljeds be dasdfied before the atribute
can be @mputed. The values of dynamic relational
attributes may change & classficaion pogresses and
additional inferences are made aou related ojeds.

For example, if we were predicting company type, then
static relational attributes might record the number of
board members who have the titlte CEO or the average
salary of offices. Dynamic relational attributes might
record the most prevalent type of corporate stockholder or
the maximum number of subsidiaries that share the same
type. Both o these latter attributes are dynamic and
relational because they reference the company type of
related oljeds, the very thing we ae trying to infer abou
the primary ojed. For  notational  simplicity, the
remainder of this paper will refer to intrinsic and static
relational attributes as static attributes, and dyramic
relational attributes as dynamic attributes.
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Figure 1: Corporate data ontology

In arelational corporate data set, knowing the type of
one company might help us infer the type of another
company to which it is related, and \ice versa. For
instance, we may find that individuals tend to serve on
boards of companies with the same type, so if a personis
on the board of both company X and company Y, and
company X is a bank, then company Y is more likely to
also be abank. Or we may find that companies tend to
own stock in companies with the same type, so if a
company owns both company X and company Y, and
company X is a bank, then company Y is more likely to
be abank. In stuations of this type, the relations among
objeds assst the inferences.

In iterative dassficaion, a model is built using a
variety of static and dyramic dtributes. When training the
model, the dass labels of al objeds are known and
consequently the values of all dynamic &tributes are dso
known.

The trained clasdfier is then applied to previoudy
unseen examples for which the dasslabels are unknown.
Initially, because dass labels of related oljeds are
unknavn, values of al dynamic dtributes are dso
unknowvn. However, their values can be estimated as
clasdficdion pogresses. At the onset, the dasdfier
makes predictions for all objeds based oy onthe values
of satic dtributes. Clasdficaions made with high
probahility are acceted as valid and are written into the
data & known classlabels. SBCs are useful for iterative
classficaion because eat prediction hes an associated
probability estimate that can be used to gude iterative
classficaion.

After some percentage of the most certain
clasdficdions are “acceted” the dassfier starts the next
iteration, recdculating dyramic dtributes in light of this
new information and proceading with clasdfication orce
again. At ead iteration, additional dynamic atributes are
filled in and a greaer percentage of classficaions are
accepted.



Becaise eat prediction is both recdculated and
reevaluated for ead iteration, a prediction abou a given
objed may change over the murse of iterations. If the
probahility associated with a particular prediction fall s out
of the top percentage of acceted predictions, the
inference will be removed from the data. Also, if the
predicted classlabel changes for a particular objed (and
the prediction is accepted), the new class label will be
written into the data for that objed.

After a given number of cycles, when all classficaions
have been accepted, the process terminates. We
conjedure that iterative dassficaion will produce more
acarate predictions of class values than conventional
clasdficaion invaving intrinsc and static relational
attributes alone.

Iterative Classification Algorithm

1. Build model on fully labeled training set

2. Apply trained model to test set of N instances. For
each iterationi: 1tom
a. Calculate values for dynamic relational attributes
b. Use model to predict class labels
c. Sort inferences by probability
d. Accept k class labels, where k=N (i/ m)

3. Output final inferences made by model on test set

Necessary conditions

We wmnjedure that a relational data set must exhibit
several charaderistics before an iterative dassfication
approach will improve acaoracy over a singe-pass
approadh. An initial outline of these daraderistics is
given below; however, further investigation is needed to
determine the exadt nature and scope of these wndtionrs.
First, using static atributes alone shodd na maximize
acaracy. If a dasdfier can make highly acarate
predictions withou dynamic atributes, there islittl e room
for improvement via iteration. Also, if an inference dou
one objed does not inform subsequent inferences abou
related oljeds, then dyramic atributes will not aid
clasdficaion. The relevance of dynamic dtributes can be
gauged with a single “full knowledge” clasdfication pass
— where the true dasslabels of related oljeds are used
to cdculate the values of dynamic atributes. Such a test
indicates the dfedivenessof the dynamic atributesif the
inferences made by the model were 100% acaurate; the
test reveds the caling acaracy for the chosen set of
attributes. If the caling acaracgy is not significantly
higher than the floor acaracy (using ory satic
attributes), iteration will produce no dscernible éfed.
Seoond the data set must be sufficiently conneded. An
iterative goproach uses relational structure to maximize
the use of its inferences. The results of classficdion are
spread through the relational structure via dynamic
attributes, so if the data ae sparsely linked, then there is
less oppatunity to make use of prior inferences.

However, what constitutes “sufficient” linkage is not
clea, and it may vary significantly aadossdata sets. Both
the degree of linkage, as well as the type of linkage, may
affead the results of iterative dasdfication. Further
exploration is needed to determine the successof iterative
clasdficaionfor various types of relational structures.

Finally, there must be information present in the data to
caalyze the iteration process Initial clasdfications are
made using ordy dtatic dtributes, therefore the
clasdfication model must have away of making some
initial inferences acarately. If nore of the initia
inferences are rred, then all subsequent predictions will
be mided by those inferences that are acceted. This
condtion, combined with the first, implies the need for
“idands of certainty.”

Idands of certainty denote knowledge from which
some, but not all, objeds can be dasdfied acairately,
with high confidence Examples of islands of certainty
include ahighly predictive static dtribute that is missng
in many instances but known for some, a static atribute
for which some values are highly predictive of particular
classlabels but other values are nat, or a partially labeled
data set.

The inferences made from idands of certainty catalyze
iterative dasdfication, leading to corred dynamic
attribute cdculations and improving pedictions abou
related ojeds. Withou such idands, the performance of
iterative dasdficaion may degrade. Future work shoud
explore the extent of this degradation and determining the
size, type and number of idands needed for successul
iterative dasdfication.

Experiments

Our experiments use adata set which recordsintrinsic and
relational features of pubicly traded corporations. The
data ae drawn from documents filed with the US
Seaurities Exchange Commisson (SEC). Due to the size
of the database, we dhose to work with data from only
two induwstries, banks and chemica companies. Data ae
maintained separately for ead indwstry in the SEC
database, so substantial consolidation was neeled to
combine data from two industries.

The data mnsist of companies, their board members
and dficers, stockholders, contradors and subsidiaries.
The data set contains 2142 central companies (892
chemicad companies and 1250 lbnks). It also contains
18679 related companies. 5201 corporate owners, 969
contradors, and 12509subsidiaries. Owners, contradors,
and subsidiaries do nd have the same intrinsic atributes
as the banks and chemicd companies, so we dose to
represent then as separate objeds. In addition to these
objeds, the data set also contains 25591 gople who serve
as officersand dredors of the companies.

We seleded a relatively smple task: to classfy
companies as to their induwstry, either bank or chemicd,
usng bah relational and intrinsic  dtributes.
Clasdficaion d companies by type is a surrogate task



intended to illustrate the potential of iterative
clasdficaionin ather domains with similar organizational
structure, such as fraud detedion a money laundering
analysis. Iterative dassficaion is nat restricted to binary
classficdion tasks. Because an SBC produces a posterior
probability estimate for ead class label, the gproach
could easily be used for classes with more than two labels.
Multiple dass labels, however, would make the queries
for cdculating and updting attribute values more
complex, and complicate ROC curve analysis.

The data ontology is siown in figure 1. Nodes in the
graph represent objeds in the data set. Links in the graph
correspond to passble relationships among obeds.
Italicized labels indicate link o objea type. All other
labels correspond to intrinsic data associated with the
links and oljeds. A distinctive fedure of this ontology is
that companies are never linked to ather companies
diredly; they are only linked indiredaly through pople,
owners and contradors.

In ou experiments, we used four attributes for eat
company: 1) the state of incorporation (static); 2) the
number of subsidiaries (static); 3) whether the company is
linked to more than ore chemicd company through its
board members (dynamic); and 4 whether the company is
linked to more than ore chemicd company through its
insider owners (dynamic). Informal tests with additional
attributes  $owed no substantial improvement in
acaracy, so for efficiency reasons the dtributes were
limited to these four.

Sampling

Devising a digoint training and test set was chall enging.
Partial sampling d linked data can hias datisticd
estimates of relational attributes (Jensen 1998. Fradional
sampling d linkage in the data can produce under- and
over-estimates of attributes that will reduce the
effedivenessof an induction algorithm. SBCs assume that
the distribution d feduresis comparable between training
and tests sts, so their effediveness depends on a
sampling pocedure that produces smilarly linked
training and tests ts. Also, becaise iterative
classficaion invoves inferences made &ou linked
companies, a desirable sampling pocedure would retain
as much linkage to ather companies as possble.

The sampling pocedure used is sSmilar to the
exhaustive gproach described by Jensen (1998. The
processfor creding two samples A & B from the set of all
companiesis given below.

This approach produces two dgoint subsets — the core
of ead sample. By definition companies in core A have
no links to companies in sample B. Likewise, companies
in core B have no links to companies in sample A (see
figure 2). The resulting size of the @res depends on the
degreeof linkage in the data set. If the objeds are highly
linked then there will be very few objeds in the @re.

Because the success of iterative dassfication in the
corporate data depends on linkage anongcompanies, we

Sampling Procedure
1. Initialize X to the set of all company objects.
2. Do until X is empty:
a. Do until a company is placed in sample A:
i. Randomly pick a company x and remove
from X.
ii. Gather all objects one link away from x.
iii. If any of these objects is in sample B, discard
x. Otherwise place x in sample A, along with
all objects one link away from x.
b. Do until a company is placed in sample B:
i. Randomly pick a company y and remove
from X.
ii. Gather all objects one link away from vy.
iii. If any of these objects is in sample A, discard
y. Otherwise place y in sample B, along with
all objects one link away from vy.
3. For all discarded companies, randomly place half in
sample A and half in sample B.
4. Label all companies in sample A that have no links to
sample B as objects in the core of sample A. Label
sample B similarly.

removed all companies from the sample with nolinks to
other companies. This improved the statisticd power of
our evaluation by focusing onthe portion d the task to
which iterative dasdfication is most applicable. It also
reduced the total number of companies in the data set to
1088 In order to increase the number of companiesin the
core of ead sample, the definition d the mre was
relaxed. Because the only dynamic atributes used for
clasdficaion invoved links through people (insider
owners or board members), the are objeds were defined
as those that have no links through people to companies
in the other sample. Links to companies in the other
sample through corporate owners and contradors
however, were dlowed. Core A therefore consists of those
companies in sample A that have no links through ople,
to companies in sample B. The distribution d banks and
chemica companiesin bah the samples and the cores are
outlined in table 1.

Sample A Sample B

‘ 9

7

Figure 2: Example of indirect company linkage in samples




Number of Number of Total number

banks chemicals  of companies
Sample A 230 316 546
Core A 170 113 283
Sample B 236 306 542
CoreB 189 113 302

Table 1: Distribution of samples and cores

Experimental Procedure

Using the two samples A and B we performed a two-fold
crossvalidation test of iterative dasdfication. The small
number of objeds in the resulting cores, when sampled
for more than two sets, prohibited the use of more than
two dgoint samples. The dassfier was trained ona fully
labeled sample A and then tested on sample B with 10
iterations. Because the 10" iteration has only 90% of the
inferences available for dynamic dtribute cdculation, a
final classfication pess (11" iteration) was also included
which used 100% of the inferred classlabels.

During training, the dynamic atributes of sample A
make use of some of the dasslabels in sample B but this
does nat include any of the companies in core B. When
testing onsample B, the dasdfier makes inferences abou
al the companies in sample B; however, acaracy is
measured orly on the fully digoint companiesin core B.
The mmpanies of sample A must be fully labeled duing
the testing processin order to prevent biasing the dtribute
cdculation d companies in sample B that are not in core
B. In the seoondtest, the dasdfier istrained onsample B
and tested onsample A.

Results

Accuracy results for the two test sets are shown in table 2;
accuracy refers to the rate of corred predictions made by
the model for the objeds in the test set. The “Static”
acarracy results are from asingle dassficaion passusing
only static atributes of the test set, where the values for
the dynamic dtributes are dl misding. “Iteration 1’ and
“Iteration 10 are the acwragy results after the first and
tenth iteration respedively. “Full knowledge” indicates
the acaracy results of a single dassficaion passusing
al attributes, where the dynamic atributes are cdculated
with complete knowledge of the true dass labels of all
related companies.

McNemar’ s test (Sadhs 1982 was used the compare the
difference in classficaion acaracy between the 1°
iteration and 10" iteration. The McNemar statistic tests
the null hypahesis that the differences in frequencies of
corred and incorred classficaions in ead iteration
represent random variationsin the dasslabels. Combining
the results from both crossvalidation trials, the value of
the McNemar statistic was 5.558 which indicaes the
difference in classficaions from the 1* to the 10"
iterationis sgnificant at the 2% level.

% Acauracy on % Accuracy on

CoreB Core A
Static 69.2 68.6
Iteration 1 72.2 78.1
Iteration 10 75.2 80.9
Full Knowledge 78.1 80.9

Table 2: Classification accuracies

Accuracy results over the mourse of iterations for eat
crossvalidation run are shown in figure 3. Accuragy
increases gedlily throughot the dassficaion procedure
except for a drop in the final pass (11" iteration).
Dynamic atribute cdculations in the final pass include
the inferences for which the SBC model is most uncertain
— the bottom 10%. This suggests that an improvement in
clasdficaion could be adieved by the use of athreshad
for acceting predictions, instead of accepting the top
percentage.
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Figure 3: Accuracy results on core objects for each iteration

Becaise acoracy maximizaion asumes equa
misclassficaion cost for false positive and false negative
errors, the use of clasdficaion acaragy as a primary
metric to compare dassfiers is not always an indicaion
of superior performance for other costs and class
distributions (Provost, Fawcett and Kohavi 1998.
Recaver Operating Charaderistic (ROC) analysis is an
aternative means to evaluate the aror tradeoffs
asciated with a given model.

ROC curves for the SBC models on the 1* and 10"
iterations are shown in figure 4. The arves dow the
predictive aility of ead model acdossall possble eror



costs and class distributions. Each SBC modd is
represented in ROC spaceby a aurve @rrespondng to its
true positi ve rates and false positive rates (TP, FP), as the
probahility threshold between classes is varied between
zero and ore.

An ROC curve maps a dassfier's performance & the
confidence threshold for acceptance of its predictions is
varied between the etremes of acceting no
clasdficdions to accepting al clasdfications. If a model
dominates the ROC spaceit can be regarded as the “best”
predictive model for all domains, no matter what the @st
and classdistributions are in the test environment.

o"
08 ',/ A
/
o .-
= .-
2 06 -
g R
g 04 ’."
- . N
',. lterction 1
02 _- lterction 10
. — - - — - Déefaut
00 ¥
00 02 0.4 06 08 10
False Positive
10
e
08 R B
R
2 .-
-*g 06 o
g R
’
g 0.4 -
= Iterction]
02 P [terction 10
. — - - — - Defaut
00
00 02 0.4 06 08 10

False Positive

Figure 4: ROC Curves for classification on sample core abjects

Discussion

The acwragy results imply some interesting conclusions
regarding iterative dasdficationin this domain. First, our
window for improvement in this data set is quite small,
with approximately a 10% difference between the floor
and celing acarrades. The floor acarracy can be lowered
artificially by dropgng satic atributes. This was
attempted bu the iterative gproach faled withou the
incluson d both static atributes. This indicaes the
importance of having strong static atributes as idands of
cetainty from which to jumpstart the iterative process
The limited variety of linksin the data set constrained the
number of potentialy predictive dynamic dtributes, so
raising the caling acairracy was difficult.

Next, the improvement of acaracgy in the 1* iteration
compared to the static goproach is noteworthy. The
difference between classficaion in the 1* iteration and
the static test is that during the 1° iteration some dynamic
attributes values are known. For companies with lessthan
two links to ather companies through ople, we can
return a value of false for the dynamic dtributes withou
any knowledge of the company type. This suggests that
dynamic atributes whose value can be determined with
cetainty from a small amourt of evidence may be quite
helpful to the iterative process

Also, it is worth mentioning that in the second trial on
Core A, iterative dassficaion was able to match the
acaracy of clasdfication with full knowledge. This
shows the power of iterative dassficaionto classfy asif
it had full knowledge of the surroundng environment.

Finaly, the ROC curves sow that the 10" iteration
performs better than, or equal to, the 1% iteration for most
threshods. However, the ROC curves dow that the
primary effed of iteration accurs late in the airve when
the probability of a company being a bank is relatively
low. This may indicae that dynamic dtributes are more
helpful in the cae of predicting chemicd companies and
do little to increase the probabilities associated with
predictions of banks.

Related Work

Previous work of the WeKB projed investigated
clasdficdion in arelational context (Craven et al. 1998.
WebKB used bah SBCs and FOIL, a greedy covering
algorithm for learning function-free Horn clauses, to label
web pages automaticdly. Relationships among [ages, as
encoded by their hyperlinks, are used alongwith intrinsic
attributes to improve dassficaion acaracy.

“Co-training’ is an iterative gproach to leaning
models (Blum and Mitchell 1998 Mitchell 1999 that was
applied to the WebKB labeling task. Experiments how
that a large number of unlabeled instances can be used to
bocst the performance of a learning algorithm when only
a small set of labeled instances is available. Multiple
clasdfiers are leaned on independent sets of attributes,
from a common set of training examples. Each clasdfier
is run and its most confidently predicted pasitive and
negative instances are alded to the training set. The
clasdfiers are releaned with the larger, augmented
training set, and the process is repeaed. By using the
same training dhta, the dassfiers ead profit from the
predictions of other clasdfiers. Co-training is tested in a
relational context; however, it can be gplied to attribute-
value data & well. This method ses iteration for leaning
models instead o using iteration in the gplicaion of
leaned models, as does iterative dassficaion.

Slattery (2000 has investigated using relational
information in the test set to classfy web pages more
acarately. FOIL-HUBS is an extension d FOIL inspired
by the Hubs & Authorities algorithm (Kleinberg 1999.
FOIL-HUBS identifies the eistence of hubs for eadh



target class (e.g., student-hubs point to many student
pages) and hubweights contribute to the probability that
pages pointed to by the hubs are of a particular class
FOIL-HUBS employs an iterative dassfication scheme to
predict class labels and estimate hub weights, which is
smilar to ouw own algorithm for iterative dassfication,
but it is limited to damains where hub noas exist. In
contrast, our work represents an initial attempt to provide
a uniform framework for the cdculation and we of a
wider range of dynamic dtributes, albeit within a smpler
model representation (SBCs as oppased to function-free
Horn clauses).

Freidman et al. (1998 have investigated the use of a
relational framework to make sophisticated probabili stic
inferences. They have shown hawv to lean probabili stic
relational models (PRMs) from relational databases.
PRMs extend the gplicability of Bayesian networks
techniques (Hedkerman 1995, and all ow the properties of
an oljed to depend probabili sticdly on bdh intrinsic and
relational attributes. As currently applied, PRMs do nd
use initial inferences to inform later inferences abou
related oljeds. However, PRMs could be used in the
same way that SBCs are used for iterative dasdficaionin
the work reported here.

The ExpedationrMaximizaion (EM) algorithm
(Dempster, Laird, and Rubin 1977 is dmilar to in spirit
to iterative dassficdion, but it addresses a somewhat
different problem. The EM agorithm uses a two-step
iterative procedure to find the maximum-likelihood
estimate of the parameters of an underlying dstribution (a
model) from a data set containing incomplete or missng
data (Bilmes 1998. The first step o EM (the
"expedation” step) finds the expeded value of missng
data values, given the airrent model. The second step of
EM (the "maximizaion" step) finds the maximum-
likelihoodmodel, given the inferred data. After repladng
the arrent model with the new model, the process
repeds. In contrast to iterative dasdficaion, EM
readjusts the model in the second step, rather than
adjusting the values of attributes that serve asinpusto the
model. Thus, it is a method d leaning a model given
attribute-value data, rather than a method d applying a
leaned model to relational data.

Kleinberg (1998 developed an iterative dgorithm,
cdled Hubs & Authorities, for Web seaching besed on
the network structure of hyperlinked pages on the Web.
The dgorithm uses a graph structure, with nodes
correspondng to web pages and dreded links indicating
the presence of hyperlinks between pages. Given the task
of identifying authoritative pages, two mutualy
reinforcing attributes are defined: hub weight and
authority weight. The weights are cdculated in an
iterative fashion by feeading the values of one atribute
into the cdculations of the other. The iterative nature of
this algorithm is smilar to ou approach in that it
maintains and updies attribute values throughou the
procedure. However, the dgorithm asaumes the values of
bath attributes are known for ead instance and starts by

asdgning equal weights to all pages. It does not use a
predictive model to assgn weight values.

Conclusions and Future Work

A number of conclusions can be drawn from this work
abou the potential of iterative dassficaion. We have
shown that there is an oppatunity to use relations in data
to incresse dasdficaion acaracy, and that an iterative
approach exploiting this oppatunity can produwce a
significant improvement in acaracy for a binary
clasdficaiontask in the corporate data set.

We have outlined several necessry condtions for
succesdul application d iterative dasdfication. For
iterative dasdficaion to improve on a static gpproach, a
data set shodd exhibit the following charaderistics:
insufficient predictive power from static atributes and
useful dynamic dtributes, rich relational structure, and
isands of certain knowledge from which to jump start the
iterative process Expansion and formal verification d
these ideas is an important areafor further investigation.

In addition to presenting oppatunities for discovery,
relational data dso dffer several challenges. Devising a
sampling procedure that does not bias gatisticd estimates
of relational attributesis a difficult task. As the relational
data structure becomes more mmplex, our oppatunities
for improving clasdficdion increase, but so do the
challenges of sampling. Future work would be daded by
the use of naturally digoint data sets with similar
distributions such as the university web sites used by
Slattery (2000.

Formulating wseful dynamic atributes is also
challenging. It isdifficult to define the value of a dynamic
attribute when some, but not all of the related classlabels
have been inferred. Because the dasdfier is trained on
full knowledge, dynamic atribute values expressng
partial knowledge can hias or midead the predictions of
the dasdfier. A few incorred inferences could have a
“snowball effed,” with the dynamic dtributes cascading
the mistakes throughou the test set. For this reason it is
important to use dynamic dtributes whose values are
either known with complete cetainty or not at all.
Threshold attributes are a good example of this type of
“robust” attribute, where the value is known as onas a
particular value threshold is excealed. Both dyramic
attributes used in this experiment are examples of
threshod attributes. Future work includes baoth
establishing the dfeds of threshold attributes on iterative
clasdficaion, and determining daher types of robust
attributes.

Attributes that combine probabili stic evidence of all
related classlabels are apotential alternative to threshold
attributes. Instead of accepting the top percentage of
predictions, or thase excealing a threshdd, the dgorithm
would accept all predictions. The values of these
probabilistic  dtributes are then determined by a
combination o the probabilities assciated with the
inferred classlabels of related oljeds. Asthe cetainty of



predictions change over the course of iterations, the
attribute values could be dynamically updated. Thisis an
area that requires additional exploration.

A potential pitfall of the specific variety of iterative
classification explored here is that SBCs often produce
biased probability estimates. SBCs are known to produce
optimal class predictions in a wide variety of domains;
however, SBC probability estimates are biased except
under conditions of attribute independence. Future work
includes exploring iterative classification with other
methods that produce more accurate probability estimates
such as Bayesian networks or PRMs (Freidman et al.
1999). We will also investigate the use of a threshold for
accepting predictions instead of accepting a percentage
determined by the number of iterations.

Another direction for future work involves extending
the iterative procedure for prediction of multiple object
types by simply combining the results of multiple
classifiers. Each classifier would make use of the dynamic
attributes filled in through the efforts of the other
classifiers. In this sense the classifiers would collaborate
with each other to improve accuracies for both
classification tasks. Caruana (1997) has investigated the
collaboration of multiple models for learning under the
hypothesis that multiple, related learning tasks share the
same representation, and learning one helps with learning
another. A relational approach would be similar but would
involve the collaborative application of models instead.
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