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1 Introduction and OverviewIn this paper we consider two parameters of certain random graphs: the num-ber of vertices and the number of cycles in the largest component. Of course,the behaviour of these parameters depends on the probability distributionfrom which the graphs are picked. In one standard model we pick a randomgraph Gn;M with n vertices and M edges where each such graph is equallylikely. We are interested in what happens when we choose M as a functionof n and let n go to in�nity. The point M = 12n is referred to as the criticalpoint or the double-jump threshold because of classical results due to Erd}osand R�enyi [8] concerning the dramatic changes which occur to these param-eters at this point. If M = cn + o(n) for c < 12 then almost surely (i.e. withprobability tending to one as n tends to in�nity) Gn;M has no component ofsize greater than O(log n), and no component has more than one cycle. IfM = 12n+ o(n), then almost surely (a.s.) the largest component of Gn;M hassize �(n2=3). If M = cn for c > 12 then there are constants �; � > 0 dependenton c such that a.s. Gn;M has a component on at least �n vertices with atleast �n cycles, and no other component has more than O(log n) vertices ormore than one cycle. This component is referred to as the giant componentof Gn;M . For more speci�cs on these two parameters at and around M = 12nsee [3], [11], or [14].In this paper, we are interested in random graphs with a �xed degreesequence where each graph with that degree sequence is chosen with equalprobability. Of course, we have to say what we mean by a degree sequence.If the number of vertices in our graph, n is �xed, then a degree sequence issimply a sequence of n numbers. However, we are concerned here with whathappens asymptotically as n tends to in�nity, so we have to look at a \se-quence of sequences". Thus, we generalize the de�nition of degree sequence:De�nition: An asymptotic degree sequence is a sequence of integer-valued functions D = d0(n); d1(n); : : : such that1. di(n) = 0 for i � n;2. Pi�0 di(n) = n.Given an asymptotic degree sequence D, we set Dn to be the degreesequence fc1; c2; : : : ; cng, where cj � cj+1 and jfj : cj = igj = di(n) for eachi � 0.. De�ne 
Dn to be the set of all graphs with vertex set [n] with degree2



sequence Dn. A random graph on n vertices with degree sequence D is auniformly random member of 
Dn.De�nition: An asymptotic degree sequence D is feasible if 
Dn 6= ; forall n � 1.In this paper, we will only discuss feasible degree sequences.Because we wish to discuss asymptotic properties of random graphs withdegree sequence D, we want the sequences Dn to be in some sense similar.We do this by insisting that for any �xed i, the proportion of vertices ofdegree i is roughly the same in each sequence.De�nition: An asymptotic degree sequence D is smooth if there existconstants �i such that limn!1 di(n)=n = �i.Throughout this paper, all asymptotics will be taken as n tends to 1and we only claim things to be true for su�ciently large n.In the past, the most commonly studied random graphs of this type havebeen random regular graphs. Perhaps the most important recent result is byRobinson and Wormald [20], [21], who proved that if G is a random k-regulargraph for any constant k � 3, then G is a.s. Hamiltonian.Another motivation for studying random graphs on a �xed degree se-quence comes from the analysis of the chromatic number of sparse randomgraphs. This is because a minimally (r+1)-chromatic graph must have mini-mum degree at least r. In an attempt to determine how many edges were nec-cessary to force a random graph to a.s. be not 3-colourable, Chv�atal [7] stud-ied the expected number of subgraphs of minimum degree three in randomgraphs with a linear number of edges. He showed that for c < c� = 1:442 : : :,the expected number of such subgraphs in Gn;M=cn is exponentially small,while for c > c� the expected number of such subgraphs in Gn;M=cn is ex-ponentially large. In the work that motivated the results of this paper, theauthors used a special case of the main theorem of this paper to show thatthe probability that a random graph on n vertices with minimum degreethree and at most 1:793n edges is minimally 4-chromatic is exponentiallysmall [18]. We used this to show that for c a little bit bigger than c�, theexpected number of minimally 4-chromatic subgraphs of Gn;M=cn is expo-nentially small. This suggests that determining the minimum value of c forwhich a random graph with cn edges is a.s. 4-chromatic may require morethan a study of the subgraphs with minimum degree 3.Recently  Luczak [14] showed (among other things) that if G is a random3



graph on a �xed degree sequence1, with no vertices of degree less than 2,and at least �(n) vertices of degree greater than 2, then G a.s. has a uniquegiant component. Our main theorem also generalizes this result.We set Q(D) = Pi�1 i(i� 2)�i. Essentially if Q(D) > 0 then a randomgraph with degree sequence D a.s. has a giant component, while if Q(D) < 0then all the components of such a random graph are a.s. quite small. Notehow closely this parallels the phenomenon in the more standard model Gn;M .Note further that these results allow us to determine a similar thresholdfor any model of random graphs as long as: (i) we can determine the degreesequence of graphs in the model with reasonable accuracy, and (ii) once thedegree sequence is determined, every graph on that degree sequence is equallylikely. Gn;p is such a model, and thus (as we see later), our results can beused to verify the previously known threshold for Gn;p.Before de�ning the parameter precisely, we give an intuitive explanationof why it determines whether or not a giant component exists. Suppose thatDn has (�i + o(1))n vertices of degree i for each i � 0. Pick a random vertexin our graph and expose the component in which it lies using a branchingprocess. In other words, expose its neighbours, and then the neighbours ofits neighbours, repeating until the entire component is exposed. Now whena vertex of degree i is exposed, then the number of \unknown" neighboursincreases by i � 2. The probability that a certain vertex is selected as aneighbour is proportional to its degree. Therefore the expected increase inthe number of unknown neighbours is (roughly) Pi�1 i(i � 2)�i. This is, ofcourse, Q(D).Thus, if Q(D) is negative then the component will a.s. be exposed veryquickly. However, if it is positive then the number of unknown neighbours,and thus the size of the component, might grow quite large. This gives themain thrust of our arguments. We will now begin to state all of this moreformally.There are a few caveats, so in order for our results to hold, we mustinsist that the asymptotic degree sequences we consider are well-behaved.In particular, when the maximum degree in our degree sequence grows withn, we can run into some problems if things do not converge uniformly. Forexample, if d1(n) = n � dn:9e; di(n) = dn:9e if i = dpne, and di(n) = 01He didn't use the asymptotic degree sequence introduced here, but the resultstranslate. 4



otherwise, then �1 = 1, and �i = 0 for i > 1, and we get Q(D) = �1.However, this is deceiving as there are enough vertices of degree pn to ensurethat a giant component containing n� o(n) vertices a.s. exists.De�nition: An asymptotic degree sequence D is well-behaved if:1. D is feasible and smooth.2. i(i � 2)di(n)=n tends uniformly to i(i � 2)�i; i.e. for all � > 0 thereexists N such that for all n > N and for all i � 0:j i(i� 2)di(n)n � i(i� 2)�i j< �3. L(D) = limn!1Xi�1 i(i� 2)di(n)=nexists, and the sum approaches the limit uniformly, i.e.:(a) If L(D) is �nite then for all � > 0, there exists i�; N such that forall n > N : j i�Xi=1 i(i� 2)di(n)=n � L(D) j< �(b) If L(D) is in�nite then for all T > 0, there exists i�; N such thatfor all n > N : i�Xi=1 i(i� 2)di(n)=n > TWe note that it is an easy exercise to show that if D is well-behaved then:L(D) = Q(D)It is not surprising that the threshold occurs when there are a linearnumber of edges in our degree sequence. We de�ne such a degree sequenceas sparse: 5



De�nition: An asymptotic degree sequence D is sparse ifPi�0 idi(n)=n =K + o(1) for some constant K.Note that for a well-behaved asymptotic degree sequence D, if Q(D) is�nite then D is sparse.The main result in this paper is the following:Theorem 1 Let D = d0(n); d1(n); : : : be a well-behaved sparse asymptoticdegree sequence for which there exists � > 0 such that for all n and i > n 14��,di(n) = 0. Let G be a graph with n vertices, di(n) of which have degree i,chosen uniformly at random from amongst all such graphs. Then:(a) If Q(D) > 0 then there exist constants �1; �2 > 0 dependent on Dsuch that G a.s. has a component with at least �1n vertices and�2n cycles. Furthermore, if Q(D) is �nite then G a.s. has exactlyone component of size greater than 
 log n for some constant 
dependent on D.(b) If Q(D) < 0 and for some function 0 � !(n) � n 18��, di(n) = 0for all i � !(n), then for some constant R dependent on Q(D), Ga.s. has no component with at least R!(n)2 log n vertices, and a.s.has fewer than 2R!(n)2 log n cycles. Also, a.s. no component ofG has more than one cycle.Consistent with the model Gn;M , we call the component refered to inTheorem 1(a) a giant component.Note that if Q(D) < 0 then Q(D) is �nite.Note also that Theorem 1 fails to cover the case where Q(D) = 0. This isanalogous to the case c = 1 in the model Gn;p=c=n, and would be interestingto analyze.One immediate application of Theorem 1 is that if G is a random graphon a �xed well-behaved degree sequence with cn + o(n) edges for any c > 1then G a.s. has a giant component, as there is no solution toPi�1 i�i > 2;Pi�1 i(i� 2)�i < 0;Pi�1 �i = 1; 0 � �i � 1.A major di�culty in the study of random graphs on �xed degree sequencesis that it is di�cult to generate such graphs directly. Instead is has becomestandard to study random con�gurations on a �xed degree sequence, anduse some lemmas which allow us to translate results from one model to theother. The con�guration model was introduced by Bender and Can�eld[2]and re�ned by Bollob�as[3] and also Wormald[22].6



In order to generate a random con�guration with n vertices and a �xeddegree sequence, we do the following:1. Form a set L containing deg(v) distinct copies of each vertex v.2. Choose a random matching of the elements of L.Each con�guration represents an underlying multigraph whose edges arede�ned by the pairs in the matching. We say that a con�guration has agraphical property P if its underlying multigraph does.Using the main result in [17] it follows that the underlying multigraphof a random con�guration on a degree sequence meeting the conditions ofTheorem 1 is simple with probability tending to e��(D), for some�(D) < O(n1=2��). The condition di(n) = 0 for all i > n1=4�� is needed toapply this result. If Q(D) is �nite then �(D) tends to a constant.Also, any simple graph G can be represented by Qv2V (G)deg(v)! con�g-urations, which is clearly equal for all graphs on the same degree sequenceand the same number of vertices.This gives us the following very useful lemmas:Lemma 1 If a random con�guration with a given degree sequence Dmeeting the conditions of Theorem 1 (with Q(D) possibly unbounded) has aproperty P with probability at least 1 � zn for some constant z < 1, then arandom graph with the same degree sequence a.s. has P .Lemma 2 If a random con�guration with a given degree sequence Dmeeting the conditions of Theorem 1 a.s. has a property P , and if Q(D) <1,then a random graph with the same degree sequence a.s. has P .Using these Lemmas, it will be enough to prove Theorem 1 for a randomcon�guration.The con�guration model is very similar to the pseudograph model devel-oped independently by Bollob�as and Frieze [6], Flajolet, Knuth and Pittel[10], and Chv�atal [7]. Both models are very useful when working with randomgraphs on a given degree sequence.Having de�ned the precise objects that we are interested in, and the modelin which we are studying them, we can now give a more formal overview ofthe proof. The remainder of this section is devoted to this overview. In thefollowing two sections we give all the details of the proof. In section 4, wesee some applications of Theorem 1: the aforementioned work concerning the7



chromatic number of sparse random graphs, and a new proof of a classicaldouble-jump theorem, showing that this work generalizes that result. Areader who is not interested in the details of the proof might want to just�nish this section and then skip ahead to the last one.In order to examine the components of our random con�guration, we willbe more speci�c regarding the order in which we expose the pairs of therandom matching.Given D, we will expose a random con�guration F on n vertices, di(n) ofwhich have degree i as follows:At each step, a vertex all of whose copies are in exposed pairs is entirelyexposed. A vertex some but not all of whose copies are in exposed pairs ispartially exposed. All other vertices are unexposed. The copies of partiallyexposed vertices which are not in exposed pairs are open.1. Form a set L consisting of i distinct copies of each of the di(n) verticeswhich have degree i.2. Repeat until L is empty:(a) Expose a pair of F by �rst choosing any member of L, and thenchoosing its partner at random. Remove them from L.(b) Repeat until there are no partially exposed vertices:Choose an open copy of a partially exposed vertex, and pair itwith another randomly chosen member of L. Remove them bothfrom L.All random choices are made uniformly.Essentially we are exposing the random con�guration one component ata time. When any component is completely exposed, we move on to a newone; i.e. we repeat step 2(a).It is clear that every possible matching amongst the vertex-copies occurswith the same probability under this procedure, and hence this is a valid wayto choose a random con�guration.Note that we have complete freedom as to which vertex we pick in Step2(a). In a few places in this paper, it will be important that we take advantageof this freedom, but in most cases we will pick it randomly in the same mannerin which we pick all the other vertex-copies, i.e. unless we state otherwise,we will always just pick a uniformly random member of L.8



Now, let Xi represent the number of open vertex-copies after the ith pairis exposed. If the neighbour of v chosen in step 2(b) is of degree d, thenXi goes up by d � 2. Each time a component is completely exposed andwe repeat step 2(a) then if the pair exposed in step 2(a) involves vertices ofdegree d1 and d2 then Xi is set to a value of d1 + d2 � 2.Note that if the number of vertex-copies in L which are copies of verticesof degree d is rd, then the probability that we pick a copy of a vertex ofdegree d in step 3(b) is rd=Pi�1 ri. Therefore initially the expected changein Xi is approximately Pi�1 i(i� 2)di(n)Pj�1 jdj(n) = Q(D)K :Therefore, at least initially, if this value is positive then Xi follows aMarkov process very close in distribution to the well-studied \Drunkard'sWalk", with an expected change of Q(D)K . Since Xi+1 � Xi � 1 always, astandard result of random walk theory (see for example [9]) implies that ifQ(D) > 0, then after �(n) steps, Xi is a.s. of order �(n).It follows that our random con�guration a.s. has at least one componenton �(n) vertices. We will see that such a component a.s. has at least �(n)cycles in it, and this will give us the �rst part of Theorem 1. We will alsosee that if Q(D) is bounded, then this giant component is a.s. unique.On the other hand, if Q(D) < 0, then Xi a.s. returns to zero fairlyquickly, and this will give us the other part of Theorem 1, as the sizes ofthe components of F are bounded above by the distances between values ofi such that Xi = 0.Of course the random walk followed by Xi is not really as simple as this.There are three major complications:1. A pure random walk can drop below 0. Whenever Xi reaches 0, itresets itself to a positive number.2. We neglected to consider that the second vertex-copy chosen in Step2(b) might be an open vertex-copy in which case Xi decreases by 2.We will call such a pair of vertex-copies a backedge.3. As more and more vertices are exposed, the ratio of the members of Lwhich are copies of vertices of degree d shifts, and the expected increaseof Xi changes. 9



These complications are handled as follows:1. This will increase the probability of Xi growing large, and so this onlyposes a potential problem in proving part (b). In this case, we willshow that the probability of a component growing too big is of ordero(n�1), and hence even if we \try again" n times, this will a.s. neverhappen.2. We will see that this a.s. doesn't happen often enough to pose a seriousproblem, unless the partially exposed component is already of size �(n).3. In proving part (a), we look at our component at a time when the ex-pected increase in Xi is still at least 12 its original value. We will seethat the component being exposed at this point is a.s. a giant com-ponent. In proving part (b), it is enough to consider the con�gurationafter o(n) steps. At this point, the expected increase hasn't changedsigni�cantly.This is a rough outline of the proof. We will �ll in the details in the nexttwo sections.2 Graphs With No Large ComponentsIn this section we will prove that the analogue of Theorem 1(b) holds forrandom con�gurations. Lemma 1 will then imply that it holds for randomgraphs. We will �rst prove that if F is a random con�guration meetingthe conditions given in Theorem 1(b), then F a.s. does not have any largecomponents.Given Q(D) < 0 set � = �Q(D)=K and set R = 150�2 .Lemma 3 Let F be a random con�guration with n vertices and degreesequence Dn meeting the conditions of Theorem 1. If Q(D) < 0 and if forsome function 0 � !(n) � n 18�� F has no vertices of degree greater than!(n), then F a.s. has no components with more than � = dR!(n)2 log nevertices.The following theorem of Azuma will play an important role:Azuma's Inequality [1] Let 0 = X0; : : : ;Xn be a martingale withj Xi+1 �Xi j� 110



for all 0 � i < n. Let � > 0 be arbitrary. ThenPr[j Xn j> �pn] < e��2=2This yields the following very useful standard corollary.Corollary Let � = �1;�2; : : : ;�n be a sequence of random events. Letf(�) = f(�1;�2; : : : ;�n) be a random variable de�ned by these �i. If foreach i:max j E(f(�) j �1;�2; : : :�i+1)� E(f(�) j �1;�2; : : :�i) j� ciwhere E(f) denotes the expected value of f , then the probability thatj f � E(f) j> t is at most: 2 exp �t22P c2i !For more details on this corollary and an excellent discussion of martingalearguments see either [16] or [5].In order to prove Lemma 3, we will analyze the Markov process describedin Section 1.Recall that Xi is the number of open vertex-copies after i pairs of ourcon�guration have been exposed. Similarly, we let Yi be the number ofbackedges formed, and Ci be the number of components that have been atleast partially exposed during the �rst i steps. We also de�ne Wi to be thesum of deg(v)� 2 over all vertices v completely or partially exposed duringthe �rst i steps. We note that Wi = Xi + 2Yi � 2Ci.Now Wi \stalls" whenever a backedge is formed, and only changes when-ever a new vertex is completely or partially exposed. For this reason, it iseasier to analyze Wi when it is indexed not by the number of pairs exposed,but by the number of new vertices exposed. Thus we introduce another vari-able which does exactly this. We let Zj be the sum of deg(v) � 2 over the�rst j new vertices (partially or completely) exposed.The reason that we are introducing Zj is that it has the same initialexpected increase as Xi, but behaves much more nicely. In particular, itisn't a�ected by the �rst and second complications discussed at the end ofSection 1. Speci�cally, if after the �rst j vertices have been completely or11



partially exposed, there are exactly ri(j) unexposed vertices of degree i, thenZj+1 = Zj + (i� 2) with probability iri(j)=P iri(j).Now in order to discuss Xi and Zj at the same time, we will introduce therandom variable Ij which is the number of pairs exposed by the time thatthe jth vertex is partially exposed; i.e. WIj = Zj.Recall that � = R!(n)2 log n.Lemma 4 Suppose that F is as described in Lemma 3. Given any vertexv in F , the probability that v lies on a component of size at least � is lessthan n�2.Proof:Here we will insist that v is the �rst vertex chosen in Step 2(a). Thereforethe probability that v lies on a component that large is at most the probabilitythat Xi > 0 for all 1 � i � �. Thus, we will consider the probability of thelatter.Note that for any i, if Ci = 1 then Wi = Xi+2Yi�2 � Xi�2. In fact, wecan also get Zi � Xi � 2. This is because at each iteration we either have abackedge or expose a new vertex. Thus in iteration i, we have exposed i�Yinew vertices, therefore Wi = Zi�Yi . Now Zi decreases by at most one at eachstep; therefore Zi � Zi�Yi � Yi �Wi � Yi � Xi + Yi � 2 � Xi � 2.Now if Xi > 0 for all 1 � i � �, then C� = 1. Therefore, the probabilitythat Xi > 0 for all 1 � i � � is at most the probability that Z� > �2. Wewill concentrate on this probability, as Zi behaves much more predictablythan Xi.Initially the expected increase in Zj is Pi�1 i(i � 2)di(n)=Pi�1 idi(n) =�� + o(1). We claim that for j � �, the expected increase in Zj is less than��2 .This is true because the expected increase of Zj would be highest if the�rst j vertex-copies chosen were all copies of vertices of degree 1. If this werethe case then the expected increase in Zj would be:�(d1(n)� j) +Pi�2 i(i� 2)di(n)(d1(n)� j) +Pi�2 idi(n) + o(1) = �� + o(1)� ��2for su�ciently large n, as j = o(n) and idi(n) ! �i uniformly.Therefore, the expected value of Z� is less than ��2� + deg(v) < ��3�.12



We will use the corollary of Azuma's Inequality to show that Z� is a.s.very close to its expected value.�i will indicate the choice of the ith new vertex exposed, i = 1; : : : ; �,and f(�) = Z�. We need to boundj E(f(�) j �1;�2; : : :�i+1)� E(f(�) j �1;�2; : : :�i) j :Suppose that we are choosing the (i+1)st vertex to be partially exposed.Let 
 be the set of unexposed vertices at this point. The size of 
 is n� i.For each x 2 
, de�ne Ei+1(x) to be E(Z� j �1;�2; : : : ;�i+1) where �i+1is the event that x is the (i + 1)st new vertex exposed.Consider any two vertices u; v 2 
. We will bound jEi+1(u)� Ei+1(v)j.Consider the order that the vertices in 
�fu; vg are exposed. Note thatthe distribution of this order is una�ected by the positions of u; v.Let S be the set of the �rst ��2 vertices under this order, and let w be thenext vertex. Now, Z� = Zj�1 +(Px2S deg(x)�2)+deg(y1)�2+deg(y2)�2,where y1 is the jth vertex exposed (either u or v) and y2 is either u; v; orw. Therefore, the most that choosing between u; v can a�ect the conditionalexpected value of Z� is twice the maximumdegree, i.e. jEi+1(u)� Ei+1(v)j �2!(n).Since,E(f(�) j �1;�2; : : :�i) = Xx2
Prfx is choseng � Ei+1(x);we have thatj E(f(�) j �1;�2; : : :�i+1)� E(f(�) j �1;�2; : : :�i) j� 2!(n):Therefore by the corollary of Azuma's Inequality, the probability thatZ� > 0 is at most:2 exp �(�3R!(n)2 log n)22P(2!(n))2 ! = 2n� �272R< n�2: 2And now Lemma 3 follows quite easily:Proof of Lemma 3: 13



By Lemma 4, the expected number of vertices which lie on componentsof size at least � is o(1). Therefore a.s. none exist. 2We also get the following Corollary:Corollary 3 Under the same conditions as Lemma 3, a.s. Xi < 2�throughout the exposure of our con�guration.Proof:Because Xi drops by at most 2 at each step, if it ever got that high, itwould not be able to reach 0 within R!(n)2 log n steps. 2We will now show that F a.s. doesn't have many cycles. First, we willsee that it a.s. has no multicyclic components.Lemma 5 Let F be a random con�guration meeting the same conditionsas in Lemma 3. F a.s. has no component with at least 2 cycles.Proof:Choose any vertex v. Let Ev be the event that v lies on a component ofsize at most � with more than one cycle, and that throughout the exposureof this component, Xi < 2�.We will insist that v is the �rst vertex examined under Step 2(a). If thesize of the �rst component is at most � then the second backedge must bechosen within at most �+ 2 steps. Therefore the probability that E holds isless than  � + 22 !� 2�M � 2�� 3�2 = o �n�1�as !(n) < n 18��.Therefore the expected number of vertices for which Ev holds is o(1) andso the probability that Ev holds for any v is o(1).Therefore by Lemma 3 and Corollary 3 a.s. no components of F havemore than one cycle. 2We can now show that F a.s. does not have many cycles, by showingthat it a.s. does not have many cyclic components.Lemma 6 Let F be a random con�guration meeting the same conditionsas in Lemma 3. F a.s. has less than 2� log n cycles.Proof:We will show that a.s. throughout the exposure of F , at most 2� log nback-edges are formed. The rest will then follow, since by Lemma 5, a.s. nocomponent contains more than one cycle, and so a.s. the nunmber of cyclesin F is exactly the number of backedges.14



First we must de�ne a set Bi of unmatched vertex-copies:For each i, if there are more than 2� open vertex-copies at the ith itera-tion, then let Bi consist of any 2� of them. Otherwise, let Bi consist of theopen vertex-copies and enough arbitrarily chosen members of L to bring thesize of Bi up to �. Of course if L is too small to do this, then we will justadd all of L to Bi. Let Ti be the event that a member of Bi is chosen in stepi. Clearly the number of backedges formed is at most the number of suc-cessful Ti's, plus the number of backedges formed at times when Xi > 2�.Now by Corollary 3, we know that there are a.s. none of the latter type ofbackedges, so we will concentrate on the number of the former type.Now the number of vertex-copies to choose from is Pj�1 jdj(n) � 2i +1 = M � 2i + 1. Therefore the probability of Ti holding is 2�M�2i+1 , forM � 2i + 1 � 2� and 1 otherwise.Therefore the expected value of T , the number of successful Ti's is:E(T ) = 2� + (M�2�)=2Xi=1 2�M � 2i + 1 = � log(M)(1 + o(1))Now we will use a second moment argument to show that T is a.s. notmuch bigger than E(T ).E(T 2) = Xi6=j �2(M � 2i + 1)(M � 2j + 1) + E(T )= (E(T )2 + E(T ))(1 + o(1))Therefore, by Chebyshev's inequality, the probability that T > 1:5� log(M)is at most 1=(4E(T ))(1 + o(1)) = o(1).Therefore, a.s. the number of backedges formed is less than 1:5� log(M) <2� log n, proving the result. 2And now we can prove Theorem 1(b).Proof of Theorem 1(b):This clearly follows from Lemmas 2, 3, 5, and 6. 215



3 Graphs With Giant ComponentsIn this section we will prove the analogue of Theorem 1(a) for random con-�gurations. Lemmas 1 and 2 will then imply that Theorem 1(a) holds.First we will show that a giant component exists with high probability:Lemma 7 Let F be a random con�guration with n vertices and degreesequence Dn meeting the conditions of Theorem 1. If Q(D) > 0 then thereexist constants �1; �2 > 0 dependent on D such that F a.s. has a componentwith at least �1n vertices and �2n cycles. Moreover, the probability of theconverse is at most zn, for some �xed 0 < z < 1.Throughout this section we will assume that the conditions of Lemma 7hold.As in Section 2, we will prove Lemma 7 by analyzing the Markov processdiscussed in the previous section. Again, the key will be to concentrate onthe random variable Zj.Lemma 8 There exists 0 < � < 1; 0 < � < min(14 ; K4 ) such that for all0 < � < � a.s. Zd�ne > ��n. Moreover, the probability of the converse is atmost (z1)n, for some �xed 0 < z1 < 1.Proof:For simplicity, we will assume that �n is an integer.Initially, the probability that a vertex-copy of degree i is chosen as apartner is pi(n) = idi(n)=Pj�1 jdj(n) = i�i=K + o(1).Unlike in Section 2, we have to consider the behaviour of our walk after�(n) steps. Thus we have to worry about the third complication describedat the end of Section 2, i.e. that fact that the ratios of unexposed vertices ofdi�erent degrees are shifting.It turns out that this problem is much less serious if we can ignore verticesof high degree. So what we will do is show that we can �nd a value i�, suchthat if we change Zj slightly by saying that every time a vertex of degreei > i� is chosen, we subtract one from Zj instead of adding i� 2 to it, thenwe will still have positive expected increase.We will then show that we can �nd a sequence �1; : : : ; �i� summing toone, such that for each 2 � i � i�, �i is a little less than the initial probabilityof a vertex of degree i being chosen. However, if we were to adjust Zj a littlefurther by selecting a vertex of degree i with probability �i at each step, thenwe would still have a positive expected increase.We will call this \adjusted Zj" Z�j . Clearly, if we �nd some J such that16



after J steps, the probability of choosing a vertex of degree i is still at least�i for 2 � i � i�, then the probability that ZJ > R for any R is at leastas big as the probability that Z�J > R. We will concentrate on the secondprobability as Z�j is much simpler to analyze.More formally, what we wish do is choose a sequence �1 : : : ; �i� such that1. P�i = 1;2. 0 < �i < i�i=K, for 2 � i � i�, unless 0 = �i = i�i=K;3. Pi�1 i(i� 2)�i > 0.Note that: Xi�1(i� 2)pi(n) = Xi�1(i� 1)pi(n)�Xi�1 pi(n)= Xi�2(i� 1)pi(n)� 1:Set pi = i�i=K.Since D is well-behaved and Q(D) > 0, there exists i� such thatPi�i=2(i� 1)pi > 1 + �0, for some �0 > 0 and su�ciently large n.Therefore, we can choose a sequence �1; : : : ; �i� such that for all 2 �i � i�, pi > �i > 0 unless pi = �i = 0, �1 = 1 � �2 � �3 � : : : � �i�, andPi�i=2(i� 1)�i = 1 + �02 . It follows that Pi�1(i� 2)�i = �02 .Consider the random variable Z�j which follows the following randomwalk:� Z�0 = 0� Z�j+1 = Z�j + (i� 2) with probability �i, 1 � i � i�.For i = 2; : : : ; i�, choose any �i > 0 such that i�i��iK < �i, and set� = minf�2; : : : ;�i�; K4 g. Clearly, after at most � iterations, the probabilityof choosing a copy of a vertex of degree i � 2 is at least �i. Therefore, for0 � j � �n, the random variable Zj majorises Z�j ; i.e. for any R:Pr[Zj > R] � Pr[Z�j > R:]Now the expected increase in Z�j at any step is �02 . Thus the lemmafollows by letting � = �04 , as it is well-known (see for example [9]) that Z��n17



is a.s. concentrated around its expected value which is 2��n, and that theprobability of deviating from the expected value by more than �(n) is as lowas claimed. 2We have just shown that Zj a.s. grows large. However, we really want toanalyze Xj . In order to do this, recall that the random variable Ij is de�nedto be the number of pairs exposed by the time that the jth vertex is partiallyexposed; i.e. WIj = Zj .Lemma 9 There exists 0 < �0 < � such that for any 0 < � � �0 therea.s. exists some 1 � I � Id�ne. such that XI > 
n, where 
 = min( ��2 ; 14).Moreover, the probability of the converse is at most (z2)n for some 0 < z2 < 1,dependent on �.Proof:For simplicity, we will assume that �n is an integer.We will count W , the number of backedges formed before either Xi > 
nor I�n pairs have been exposed. We claim that we can choose �0 such thata.s. W < 
2n for � � �0.At any step i; 1 � i � I�n, the probability that an open vertex-copy ischosen is XiKn�2i + o(1), regardless of the choices made previous to that step.Now Ij � j + YIj � j + Zj2 � (� + ��)n.Therefore, at each step, the probability that such a backedge is formed is0 if Xj > 
n and at most p = 12��K � 2� � 2��if Xj � 
n.Thus the number of such copies chosen is majorised by the binomialvariable BIN(p; I�n).Therefore the lemma follows so long as pI�n � p(� + ��)n < 
2n, which isequivalent to 4� + 4�� < K, yielding �0.Now if Xi � 
n for all 1 � i < I�n then W is equal to YI�n .Therefore XI�n = Z�n � 2YI�n which with probability at least 1� (z1)n isat least ��2 n, which yields our result. 2Now that we know that Xi a.s. gets to be as large as �(n), we can showthat there is a.s. a giant component:Lemma 10 There exists �1; �2 > 0 such that the component being exposedat step I = Id�0ne will a.s. have at least �1n vertices and �2n cycles. Moreover,the probability of the converse is at most (z3)n, for some �xed 0 < z3 < 1.18



Proof:Note that at this point there are a.s. at least n�2�0n�
n > n5 unexposedvertices. Form a set � consisting of exactly one copy of each of them.There is a set � of XI open vertex-copies whose partners must be exposedbefore this component is entirely exposed. We will show that a.s. at least�1n of these will be matched with members of �, and at least �2n of these willbe matched with other open vertex-copies from �. Clearly this will prove thelemma.Now there are M � 2I vertex-copies available to be matched. Our pro-cedure for exposing F simply generates a random matching amongst themwhere each matching is equally probable. The expected number of pairscontaining one vertex from each of �; � is at least n5 � XI2M�I�, and the ex-pected number of pairs of open vertex-copies which form an edge of F is�M2 � I� � XIM�2I �2.The previous lemmas give us a lower bound of 2�1n; 2�2n on these num-bers, and it follows from the Cherno� bounds that these numbers are a.s. atleast half of their expected values with the probability of the converse as lowas claimed. Therefore the component a.s. has at least �1n vertices and atleast �2n cycles. 2And now Lemma 7 follows quite easily:Proof of Lemma 7:This is clearly a corollary of Lemma 10. 2We will now see that F a.s. has only one large component.Lemma 11 If F is a random con�guration as described in Lemma 7,then F a.s. has exactly one component on more than T log n vertices, forsome constant T dependent on the degree sequence.Proof:We have already shown that F a.s. has at least one giant component ofsize at least �1n. We will see here that no other components of F are large.Consider any ordered pair of vertices (u; v). We say that (u; v) has prop-erty A if u and v lie on components of size at least �1n and T log n respectively.We will show that for an appropriate choice of T , the probability that (u; v)has property A is o(n�2), which is enough to prove the lemma.Recall that we may choose any vertex-copy we wish to start the exposurewith. We will choose u.By Lemma 9, there a.s. exists some I � Id�1ne, such that XI > 
n where19




 = min( ��02 ; ��12 ; 14), and so we can assume this to be the case. Note that ifafter I steps, we are not still exposing the �rst component, C1, or if we haveexposed a copy of v, then (u; v) does not have property A, so we will assumethe contrary. De�ne � to be the set of open vertex-copies after I steps.Here we will break from the standard method of exposure. We will startexposing v's component, C2, immediately, and put o� the exposure of therest of C1 until later. We will see that if C2 gets too big, then it will a.s.include a member of �.We expose C2 in the following way. We start by picking any copy ofv, and exposing its partner. We continue exposing pairs, always choosinga copy of a partially-exposed vertex which is known to be in C2 (if one isavailable), and exposing its partner. We check to see if this partner lies in�. This would imply that v lies in C1. Once C2 is entirely exposed, if it isdisjoint from C1 then we return to exposing the rest of C1 and continue toexpose F in the normal manner. Note that this is a valid way to expose F .At each step, the probability that a member of � is chosen is at least 
K .Also, if v lies on a component of size greater than T log n, then it must takeat least T log n steps to expose this component. Therefore, the probabilitythat v lies on a component of size greater than T log n which is not C1 is atmost: �1 � 
K�T logn = o �n�2�for a suitable value of T .Therefore the expected number of pairs of vertices with property A tendsto zero as n!1, so a.s. none exist. 2It only remains to be shown that F a.s. has no small components withmore than one cycle.Lemma 12 If F is a random con�guration as described in Lemma 7,then F a.s. has no multi-cyclic component on at most T log n vertices, forany constant T .Proof:Consider the probability of some vertex v lying on such a component.We will insist that we expose an edge containing v in the �rst executionof Step 2(a). Now if this component contains at most T log n vertices, thenit is entirely exposed after at most o(n1=4) steps as the maximum degree isn1=4��. 20



At each point during the exposure we can assume Xi < n1=4, as otherwiseXi wouldn't be able to return to zero quickly enough.Therefore, at each step, the probability that a backedge is formed is atmost o(1)n1=4=(M � 2n1=4) = o(n�3=4).Therefore, the probability that at least 2 cycles are formed is at most:o(1)�  n1=42 !(n�3=4)2= o �n�1�Therefore the expected number of vertices lying on such components iso(1), and hence a.s. none exist. 2And now we have Theorem 1(a):Proof of Theorem 1(a):This clearly follows from Lemmas 1, 2, 7, 11, and 12. 2It is worth noting that by analyzing the number of open vertices of eachdegree more carefully throughout the exposure of F , it is possible to computethe size of the giant component more precisely. In fact we can �nd a �(D)such that the size of the giant component is a.s (1 + o(1))�(D)n. Details willappear in a future paper.4 ApplicationsHere are a few applications of Theorem 1. The �rst is a new proof of aclassical result concerning the double-jump threshold:Theorem 2 For c > 12 Gn;M=cn a.s. has a giant component, while forc < 12, Gn;M=cn a.s. doesn't have one.Proof:It is well known (see for example [7]) that such a graph a.s. has(2c)ii! e�2cn + o(n:51)vertices of degree i for each i � O(log n= log log n), and no vertices of higherdegree.Now expose G by �rst exposing its degree sequence, and then choosing arandom graph on that degree sequence. We will a.s. get a sequence D whichsatis�es all the conditions of Theorem 1 and for which:21



Q(D) = Xi�1 i(i� 2)(2c)ii! e�2cwhich is positive for c > 12 and negative for c < 12. 2Note that this only gives an upper bound of O � (logn)3(log logn)2� for the size ofthe largest component of G for c < 12, rather than the proper upper boundof O(log n).As mentioned earlier, this work was motivated by the study of minimally4-chromatic subgraphs of a random graph G. Recall that such a subgraphmust have minimum degree at least 3. This is of interest mainly in the studyof the chromatic number of sparse random graphs, as if �(G) � 4, then Gmust have a minimally 4-chromatic subgraph, H.Chvat�al [7] showed that if G is a random graph on n vertices and cnedges, then for c < c� = 1:442 : : :, the expected number of subgraphs of Gwith minimum degree at least 3 tends to 0 with n, while for c > c�, theexpected number of such subgraphs is exponentially large in n.The authors wished to �nd which such subgraphs could actually be min-imally 4-chromatic graphs. We looked at the following condition of Gallai[12]:De�nition If H is a graph with minimum degree r, then the low graphof H (L(H)) is the subgraph induced by the vertices of degree r.Theorem 3 If H is a minimally k-chromatic graph with minimum degreek � 1, then L(H) has no even cycles whose vertices do not induce a clique.We used this to prove the following:Theorem 4 Let H be a random graph on n vertices and at most 1:793nedges with minimal degree 3. H is a.s. not a minimally 4-chromatic graph.Moreover, the probability of failure is at most zn, for some �xed 0 < z < 1.Outline of Proof:L(H) is a graph whose vertices are all of degree 0; 1; 2; 3. We showedthat the degree sequence of L(H) could be approximately determined by theedge-density of H, and that all graphs on that degree sequence were equallylikely to appear as L(H). It then followed from Theorem 1 that if H hasedge-density at most 1:793 then L(H) a.s. has O(n) cycles. We then showedthat a.s. at least one of these cycles was even and of length at least 6, and22



the result followed from the fact that L(H) has no cliques on more than 4vertices. 2We used Theorem 4 to show:Corollary 4 There exists � > 0 such that if G is a random graph onn vertices and �n edges, then the expected number of minimally 4-chromaticsubgraphs of G is exponentially small, while the expected number of subgraphsof G with minimum degree at least 3 is exponentially large in n.Outline of Proof:It follows from the results of [7] that for c slightly larger than c�, theexpected number of such subgraphs of G with edge-density at least 1:793 isexponentially small. 2The details to Theorem 4 and Corollary 4 will appear in a future paper,and can also be found in [18].It is worth noting that Frieze, Pittel, and the authors [18], used a di�erenttype of argument to show that for c < 1:756 a random graph with edge-density c a.s. has no subgraph with minimum degree at least 3, and hence isa.s. 3-colourable.Finally, the authors would like to thank Avrim Blum, Alan Frieze, ColinMcDiarmid, Chris Small, and Mete Soner for their helpful comments andadvice, and two anonymous referees for several suggestions of improvement.References[1] K. Azuma. Weighted Sums of Certain Dependent Random Variables.Tokuku Math. Journal 19 (1967), 357 - 367.[2] E. A. Bender and E. R. Can�eld, The asymptotic number of labelledgraphs with given degree sequences. Journal of Combinatorial Theory(A) 24 (1978), 296-307.[3] B. Bollob�as. Random Graphs. Academic Press (1985).[4] B. Bollob�as and A. Thomason. Random Graphs of Small Order.RandomGraphs '83. Annals of Discrete Math 28 (1985), 47 - 97.[5] B. Bollob�as, Martingales, Isoperimetric Inequalities and RandomGraphs. Colloq. Math. Soc. Jan�os Bolyai 52 (1987), 113 - 139.23
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