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Network growth by copying
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We introduce a growing network model in which a new node attaches to a randomly selected node, as well
as to all ancestors of the target node. This mechanism produces a sparse, ultrasmall network where the average
node degree grows logarithmically with network size while the network diameter equals 2. We determine basic
geometrical network properties, such as the size dependence of the number of links and the in- and out-degree
distributions. We also compare our predictions with real networks where the node degree also grows slowly
with time—the Internet and the citation network of Rlhysical Reviewpapers.
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[. INTRODUCTION new node links to a randomly chosen target node and also to
) . its ancestor nodesubject to a constraint on the maximum
Many networks in nature and technology are sparse, i.enymper of links createdin the context of citations, copying

the average node degree is much smaller than the total num (regrettably even more natural, as it is easier merely to
ber of nodesN [1,2]. Widely studied classes of networks, cqpy the references of a cited paper rather than to look at the
such as regular grids, random graphs, and scale-free n€lyginal referencefl0]. As the literature grows, the copying
works, are maximally sparse, as the average node degregechanism will necessarily lead to later publications having
remains finite a?N—c. However, in other examples of real \,qre references than earlier publications.
sparse networks, such as the Internet, the average node de-|, the following sections, we analyze a growing network
gree grows, albeit very slowly, with system size. Motivated ,oqel with copying(GNC). We consider a model with no
by this observation, we introduce a simple network growthqopal bound on the number of links emanating from a new
mechanism of copying that naturally generates sparse nefiyge. We shall see that this simple copying mechanism gen-
works in which the average node degree diverges logaritharates og-networks. We will use the master equation ap-
mically with system size. We dub these log-networks. Analorgach to derive basic geometric properties of the network.
gous results appear in previous investigations of relategye then compare our prediction about the logarithmic

models[3,4], while models where a slowly increasing ratio growth of the average degree with data fréthysical Re-
of links to nodes is imposed externally have also been congiey citations.

sidered[5,6].
To motivate the copying mechanism for log-networks, let
us recall the growing network with redirectidGNR) [7]. Il. GNC MODEL

The GNR is built by adding nodes according to the following  we now define the GNC model precisely. The network

simple rule. Each new node initially selects an earlier “tar-grows by adding nodes one at a time. A newly introduced
get” node at random. With a specified probability, a link from node randomly selects a target node and links to it, as well as
the new node to the target node is Created; with a Compl% all ancestor nodes of the target ndﬁqg 1)

mentary probability, the link is redirected to the ancestor |f the target node is the initial root node, no additional

node of the target. Although the target node is chosen raninks are generated by the copying mechanism. If the newly
domly, the redirection mechanism generates an effective

preferential attachment because a high-degree node is more
likely to be the ancestor of a randomly selected node. By this
feature, redirection leads to a power-law degree distribution
for the network. The GNR thus provides an appealingly
simple mechanism for preferential attachment, as well as an
extremely efficient way to simulate large scale-free networks
[8].

The growing network with redirection is a simplification
of a previous mode]9] which was proposed to mimic the
copying of links in the world-wide web. In this web model, a

FIG. 1. lllustration of the growing network with copying
(GNC). The time order of the nodes is indicated. Initial links are
*Electronic address: paulk@bu.edu solid and links to ancestor nodes are dashed. Later links partially
"Electronic address: redner@bu.edu; permanent address: Depaoibscure earlier links. The new node initially attaches to random
ment of Physics, Boston University, Boston, MA 02215, USA. target node 4, as well as to its ancestors, 1 and 3.
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introduced node were to always choose the root node as th
target, a star graph would be generated. On the other hand,
the target node is always the most recent one in the network
all previous nodes are ancestors of the target and the copyin  0.0006 |
mechanism would give a complete graph. Correspondingly,
the total number of linkd y in a network ofN nodes can
range fromN-1 (star graphto N(N-1)/2 (complete graph )

- . . z 0.0004 - _
Notice also that the number of outgoing links from each new®
node (the out-degreecan range between 1 and the current
number of nodes.

0.0002 - _
11l. NETWORK STRUCTURE

We now study geometric properties of the GNC model by 0 . s

the master equation approach. We determine how the tota 5000 7000 9000

number of linksL grows with N, as well as the in-degree, L

out-degree, and the joint infout-degree distributions. FIG. 2. Distribution of the number of linkBy(L) for 10° real-

izations of a GNC ofN=1000 sites. Shown are both the raw data
A. Total number of links and the result of averaging the data over a 1% range. For this value
of N, the mean number of links is 6485.56, while E8) gives

Let L(N) be the average value of the total number of I|nk56485_47” _

in a network ofN nodes. If a newly introduced node selects
a target node withj ancestors, then the number of links
added to the network will be 1j+ Therefore, the average

total number of links satisfies

lations show that the distribution is asymmetric and quite
broad (Fig. 2). To understand the origin of the asymmetry,
notice that both the extreme cases of the star giaphN

B 1 N\ L(N) -1) and the complete gragih.=N(N-1)/2] each occur with
LN+ =L+ N<§ @ +‘“)> SLN+ 1+ probability
(1)
The factorN™! in the first line assures that a target nades PnL) = N= D!

selected uniformly from among al nodes, and we obtain
the second line by employing the sum r¢®,j ) =L.

Dividing Eg. (1) by N+1 gives because each new node must select one specific target node.
Therefore, the distribution of the total number of links van-
LIN+1) L(N)_ 1 ishes much more sharply near the lower cutoff.
N+1 N N+1’ Near the peak, however, the distributiBg(L) is symmet-

: . . ric about the average. More precisely, when the deviation
filgg then summing both sides from 1Ne-1 gives the solu- from the averaga(N)=3, LPy(L) is of the order ofS(N)
=2 [L-L(N)]?Py(L), the distribution approaches a sym-
L(N)=N(Hy-1). (2)  metric Gaussian shape. The value of the standard deviation
asN— o is

Here Hy==.,n"* is the harmonic numbefFor concrete-

ness, we assume that the network starts with a single node,

so thatL(1)=0.] Using the asymptotics of the harmonic S(N) >CN, C=v2-7%6=0.595874..., (4)
numberd 11], we find

1 1 as derived in Appendix A. The relative width of the distribu-
LIN)=NINN-N(1-1v)+ TNt (3)  tion is measured by the standard deviatioiN) divided by
the averagé (N); this ratio approaches zero és N)™* when
where y=0.577 215 66... is the Euler constant. The leadingN— =, so that fluctuations die out slowly. This slow decay of
asymptotic behavior ofNIn N can also be obtained more fluctuations explains why the distributidlfrig. 2) remains
easily from Eq.(1) by taking the continuum approximation wide for largeN and why it looks asymmetric near the peak.
and solving the resulting differential equation. The GNC model can be extended to allow for wider copy-
Thus we conclude that the average degree of the networikg variability. For example, instead of linking to one initial
grows logarithmically with the system size; that is, the copy-random target node, we can link to random initial targets.
ing mechanism generates a log-network. This simple pheFurther, we can link to each target node with probabifity
nomenon is one of our major results. and to each of the corresponding ancestors with probability
We now briefly discuss the probability distribution of the g. For this generalm,p,q) model, the analog of Ed1) is
total number of linksPy(L) for a network ofN nodes. Simu- [12]
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L(N+1)=L(N)+E<2 (p+qja>> 5 1

which reduces talL/dN=mp+mqL/N) in the continuum 19
approximation. The asymptotic growth of the average total
number of links crucially depends on the parametey

8 _
m
—pN formg<1,
L= 2 © '
mpNInN for mg=1,
oc N™d for mg> 1. 4 1

Thus incomplete copying leads to an average node degre
that is independent dfl whenmq< 1, while marginal loga-
rithmic dependence is recovered whag=1. There is also a
pathology formg> 2, as the number of links in the network 0 ' . . . .
would exceed that of a complete graph with the same num- 1890 1910 1830 1950 ~ 1970 ~ 1990 2010
ber of nodes. In this case, it is not possible to accommodate year

all the links specified by the copying rule without having a
multigraph, i.e., allowing for more than one link between a
given pair of nodes.

FIG. 3. (Color online Average number of references in the ref-
erence list ofPhysical Reviewpapers published in each ye@p).
Also shown as a smooth curve is the logarithm of the cumulative
number ofPhysical Revievwpapers that were published up to each
B. Comparison with empirical data year. The value 5 is subtracted from the latter data to make the two

. o datasets lie in the same range.
We now present empirical data from the citation network

of Physical Reviewto test whether the average degree of

these networks grows with time, and if so, whether the -

growth is consistent with log-networks. Data from all issuesSimilarly for the Internet, specifically for the Autonomous

of Physical Reviewournals are available, encompassing aSystemsAS) graph, the average number of links per node is

time span of 110 yearEl3]. From these data, we have the also growing slowly but systematically with timg20].

following evidence that citations may be described as a logQualitatively these behaviors are consistent with our expec-

network. Specifically, the average number of references itations from log-networks. It is still not possible to reach

the reference list of eacRhysical Revievpaper grows sys- definitive conclusions about the precise growth rateNon

tematically with time and is consistent with a linear increasesince the available data for the AS graf#0] cover a time

(Fig. 3). Additionally, the number oPhysical Reviewapers period when the total number of ASs has increased only by a

published in a given year roughly grows exponentially withfactor of 4 (from N=3060 in 1997 taN=12 155 in 200L

time [13]. Thus the cumulative number &hysical Review

papers up to a given year also grows exponentially. As a

result, the number of references should grow logarithmically

with the total number of available papers. This behavior is

reasonably consistent with the data of Fig. 3. ) ) )
In a related vein, the average number of coauthors per BY its very construction, the links of the GNC network

paper has grown slowly with time, due in part to the growing@re directed and there is an in-degre@nd an out-degreg

trend for collaborative research and the continuing ease dPr each nodgFig. 4), and thus two distinct corresponding

long-distance scientific interaction. While coauthorship anddegree distributions. In this subsection, we study the in-

other collaboration networks have recently been investigategegree distribution.

(see, e.g.[14-14), the analysis has primarily been on net-

work properties at a fixed time. There is, however, one study

of the number of mathematics papers with one, two, and

more authors since 194Q7]. These data show that the frac- \

C. In-degree distribution

tion of singly authored papers is decreasing systematically,
while the number of multiple-authored papers is steadily
growing. Thus it should be interesting to track the time de-
pendence of the number of coauthors in scientific publica-
tions from the current studies of collaboration networks.

Interestingly, the Internet and the world wide web exhibit
certain similarities with log-networks. For example, the total FIG. 4. A node with in-degreénumber of incoming links
number of links exceeds the total number of nodes in the=4, out-degreénumber of outgoing linksj=5, and total degree
world wide web by about an order of magnitufies,19. k=9.

i=4 j=5
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Let P,(N) be the average number of nodes with in-degree . S~
i in a network consisting o total nodes. This distribution
satisfies

i+1
—P

Pi(N+1)=Pi(N) - N

N+ PN+ 80, (7

The loss term accounts for the following two processak:

either a node of in-degrdeor (b) any of itsi daughter nodes FIG. 5. Genealogical tree representation of the network of Fig.

was chosen as the target. Either of these processes leadsliowith nodes arranged in layers left to right according to their

the loss of a node with in-degrde The total loss rate of out-degree. TI_1e initial layer contain_s only the root node. The num-

P.(N) is thus(i+1)/N. The gain term is explained similarly, ber qf _n_odgs in subsequent Iayer_s increases as the ne_twor_k grows.

and the last term on the right-hand side of E#). describes The initial links are shown as solid arrows and the copied links as

the effect of the introduction of a new node with no incom- dashed arrows.

ing links. Finally, notice that Eqg7) hold for i <N. When

i=N, there is no longer a loss term and the master equation Let Q;(N) be the average number of nodes with out-

reduces tdPy(N+1)=Py_;(N)=1. This accounts for the fact degreej in a network consisting oN nodes. By definition,

that the root node is necessarily linked to all other nodes anf0(N)=1. On the other hand, the number of nodes with

therefore there is one node with degiée in a network of ~out-degreej=1 grows each time a node with out-degree

N nodes. j—1 is selected as the target node. The out-degree distribu-
We compute the in-degree distribution by induction. Solv-tion thus satisfies the master equation

ing for the first few P;(N) for small i directly, we find a 1

simple form for the general case that we then check solves Q(N+1)=Q;(N) + =Q;_1(N). (9)

the master equatiofy). We thus find N

This equation applies even fgr=0 if we setQ_;(N)=0.

N _ Using the recursive nature of these equations, we first solve
Pi(N) = (+)0+2 fori <N-1, (8)  for Q,(N), then Q,(N), etc., and ultimately the out-degree
distribution for allj. This procedure gives
while Pi(N)=0 for i =N. QN+D= S 1 . (10
The asymptotid 2 decay agrees with the logarithmic di- ) 1=my<-<m=N M X Xy

vergence for the average node degree from the previous sec- . . . ,

tion, and perhaps explains the proliferation of exponent valEauivalently, we can recast theold sums into simple sums,
ues close to 2 for the in-degree distribution that are observe@lthough the results look less neat. For example,

in empirical studies of collaboration networkist—16 and in 1

the world wide web[18,19,21-23 In particular, a compre- Qu(N+1) = Z[(Hy)? - HZ'],

hensive study by Brodest al.[18] reports an exponent value 2

2.09, while a recent work by Donatt al. [19] (relying on whereHﬁ):E,’}':ln‘z. The asymptotic behaviors oy, H(N?>,
the WebBase project at Stanfof4]) quotes an exponent and other generalized harmonic numbers are knjdih and

value 2.1. the resulting asymptotics of the out-degree distribution are
L 1 1
D. Out-degree distribution QiIN+1)=Hy=InN+y+ ON 1Nz T

To determine the out-degree distribution, it is helpful to L L 2
think of the network as a genealogical tree, as illustrated in _ 2 = _m
Fig. 5 (see alsd 7] for this constructioh Initially the net- QN+1)= 2(In N+ yinN+ {72 6 } ¥
work consists of one root node. Subsequent nodes that attach .
to the root node will have out-degree 1 and lie in the first2nd @nalogous results hold f@;(N) for larger;. _
layer. Similarly, a new node that attaches to a node with !f We merely want to establish the leading asymptotic be-
out-degree 1 lies in the second layer. By the copying mechdl@Vior, we can replace the summation in EL) by integra-
nism, nodes in this second layer also link to the root andion- This then leads to the simple result
therefore have out-degree 2. Nodes in title layer directly (In N)}
attach to a node in th@—1)st layer and, by virtue of copy- Q(N) = ——. (11
ing, also attach to one node in every previous layer. Tiths I
layer nodes have out-degreeWe now use this genealogical Alternatively, we can derive this result within a continuum
tree picture to determine the out-degree distribution of theapproach by replacing finite differences by derivatives in the
network. largeN limit of Eqg. (9). The procedure recasts the discrete
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master equations into the differential equations

dQ _ 1
—=l -0
dN - NQJ—l(N)

whose solution is indeed E@l1).

The Poisson form of the out-degree distribution contra-
dicts the commonly presumed power-law form. There is pre-
vious literature by Brodeet al. that suggested that the out-
degree distribution has a power-law tail, with an exponent
close to 2.718]. However, this work also noted that a power
law is not a good fit to the data and that the out-degree

degree distributions

-4 " N N
distribution may possibly follow a Poisson distribution. In 10 10° 10' 102 10° 10*
fact, the analysis of Ref.19] that is based on more recent Kk
data on the structure of the wgd4] convincingly shows that _ S
a power law does not fit the out-degree distribution. FIG. 6. The in-(O), out-(A), and total(V) degree distributions

for 10° realizations of a network dfl=10* nodes. Notice that there

is always one node with total degree equal to 1 and one node with

in- and total degree equal td. The smooth curve that follows in
We define the joint degree distributidﬁ]'j(N) as the av- in-degree data is the asymptotic predicti®, while the curve that

erage number of nodes with in-degiieend out-degre¢in a  follows the out-degree data is the asymptotic predicti.

network ofN nodes. The in- and out-degree distributions can

then be distilled from the joint distribution vidP;(N) A(N+1)=A (N)+A_(N)

=2N;;(N) and Q;(N)=Z;N; ;(N). Furthermore, the average )

number of nodes with total degrdeis simply given by thatallows us to express ; via Ay,

E. Joint degree distribution

Ni(N) =Zi4=N; j(N). N
The joint degree distribution satisfies Aj(N+1)= > Ai_1j(M). (16)
M=1
i i+
Nij(N+12)=N;j(N) + N j(N) = =N (N) From Eq.(15), we find Ag;(N+1)=N" N ;(N+1) which,

in conjunction with Eq.(13), gives

1
+ NQj—l(N)‘Si,Ov (12) N
Aoj(N+1)= X Qy(M). (17)
which is an obvious generalization of the governing equa- M=1
tions (7) and(9) for the separate in- and out-degree distribu-Therefore, starting withAy; from Eq. (17), we find all the
tions. Because of the presence of the last out-degree term ¢y, via Eq. (16). The final result is
the right-hand side of Eq12), the scaling of the joint degree

distribution with system size does not hol;;(N) # Nn ;. A (N) = > Qj-1(mp). (18)
Therefore, we cannot reduce Ed.2) to an N-independent Ismp<--<my<N
recursion. Equations(10), (15), and (18) give the full solution for the

~ Nevertheless, Eqg12) still have the important simplify-  joint degree distribution.
ing feature of being recursive and thus soluble in an induc- \ypijle the complete solution is cumbersome, it can be

tive fashion. Thus, for example, for0 we have simplified asN— 2. In this limit, we can first replace the
_ factor I'(N-i—-1)/T'(N) by N7 in Eq. (15). Additionally,
NNy i(N+ 1) =(N—-1)Nyi(N)+Q;_1(N
bj(N+1) = ( INoj(N) +Qj-1(N) we can replace the summation in Ed.8) by integration.
from which These two replacements are justified whiea/N. Finally,
N using Eq.(11) and after some algebra, we find the leading
1 behavior
Noj(N+1) == 3 Qj-a(M). (13) ‘
M=1 (InN)i~1
) . ) No,j(N) — — :
Fori=1, we rewrite Eqs(12) in the form (-1
NN, (N+1)=(N=i- DN, ;(N) +iN;_y;(N). (14)  and more generally
c . (In N)j—l i+1
Now the substitution N;j(N) — [ i (19)
I'(N-i-DI(i+1) '
Ni,j(N) = T(N) A j(N) (15 Because the Poisson form the out-degree distribution holds
only whenj <In N, the generalized Poisson forthl) for the
reduces Eq(14) to the constant-coefficient recursion joint degree distribution is also valid only fgr<in N.
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Finally, although the total degree distributibi(N) does  uy=(j)=2;jQ;(N)/N and uvn={(j?. We then use these re-
not satisfy a closed equation, we can obtain this distributiorsults to derive the variance &(L).
indirectly. Whenk is of the order of IflN or smaller, we can To determineuy anduvy, we can in principle use E@10).
use Eq.(19) to find N(N). The situation in the range However, a direct approach is more useful. Starting with
k>In N is even simpler: In this region, the total degree dis-Nuy=(Zj), we find that adding a new node leads to the re-
tribution essentially coincides with the in-degree distributioncursion relation
and therefore\,(N) — Nk ™2 (Fig. 6).
(N+ Dy =(1+],+ 2 ) =L+uy+Nuy, (A1)
IV. SUMMARY which is nothing but Eq(1). In a similar manner, we derive
We introduced a growing network model that is based org recursion relation foNvy=(Zj?),
node addition plus a simple copying mechanism—the
GNC—that leads to an average node degree growing loga- (N+ 1)vp,; = <(1 +i )2+ j2> =1+ 2uy+oun+ Noy,
rithmically with the total number of nodeN. This feature
may account for the intriguing phenomenon observed invhich reduces to
many real networks that the number of links increases

slightly faster than the number of nodes. Copying arises _ 2 1
naturally in the context of citations; a not untypical scenario Unr1 = UNT N+ 1N * N+1° (A2)
is that an author will be familiar with a few primary refer-
ences, but may simply copy secondary references from prifhe variancesr?(N)=vy—(uy)? therefore satisfies
mary ones.
We solved the underlying master equations for the GNC N+ 1) = 2(N) + 1 1 (A3)

model and showed that the in-degree distribution is a power-

law over its entire range, while the out-degree distribution is

asymptotically Poissonian. The total degree distribution is From this simple recursion, we get

consequently a hybrid of the power-law and Poisson forms. @

There is, on average, one node with total degree equal to 1, o?(N) =Hy— Hy. (A4)

and there is always one node—the root—that has in-degr

equal toN-1. Thus the node degree ranges from Ntol.

Since the distribution ot has a width that scales linearly By

with N while L(N) grows asNIn N, fluctuations in node Un~In'N approaches zero &g N)™= o

degree are appreciable even for very large networks. Finally, Consider now the average number of links in the network

each node is connected to the root, so that the network dF(N):@DZ:NUN and the corresponding second moment

ameter equals 2, independentif Lo(N)=(Ly). After the addition of a new node, the second
From long-termPhysical Revievpublication data, the av- moment changes according to

erage number of references per paftke out degreegrows ,

slowly with the total literature size, consistent with the loga- L(N+1)= <(1 +iat > j) >

rithmic growth predicted by the GNC model. However, this

N+1 (N+1)2

*Fhe relative magnitude of fluctuations dies out slowly, as the
standard deviationo(N) ~\In N divided by the average

growth in the GNC model is not robust when parameters that = <(1 +Hj P22 42, 2+ (E i)2>
quantify the extent of copying are varied. The apparent loga- 5
rithmic growth for the average number of references per pa- =1+ 2uy+uy+ 2Nuy+ (1 + —>|—2(N)-
per in Physical Revievis thus a bit surprising, and it will be N

worthwhile to test whether logarithmic growth arises in a

wider range of empirical networks. Now we useL(N)=(Zj)=Nuy to write the square of Eq.

(Al) in the form
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and then subtracting this from the previous equation, the
varianceX?(N)=L,(N)-L(N)? satisfies

2
S2AN+1) = (1 + N)EZ(N) +0%(N). (A5)
APPENDIX: FLUCTUATIONS The homogeneous part of E¢A5) suggests seeking a
In this appendix, we find the variance in the distribution solution of the form>2(N)=N(N+1)Sy. This substitution re-
of the number of linksPy(L). We start by computing the casts Eq(A5) into Sy.;—Sy=[(N+1)(N+2)]1¢?(N). This is
first two moments of the out-degree distribution, an exact discrete first derivative f&,. HenceS equals
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SF(M+1)(M+2)]20%(M). Thus the variance is

N-1

S2N)=N(N+1) > *(M)

wor (M+D(M+2) (A9)

PHYSICAL REVIEW E/1, 036118(2005

Finally, by substitutingo®(M)=%;-y(j"*~j™ from Egs.
(A4) into (A6), and changing the order of the two sums, we
find that32(N) — (2-27?N(N+1) asN—o. This leads to
the asymptotic expression for the standard deviation given in
Eq. (4).
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