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We introduce a growing network model in which a new node attaches to a randomly selected node, as well
as to all ancestors of the target node. This mechanism produces a sparse, ultrasmall network where the average
node degree grows logarithmically with network size while the network diameter equals 2. We determine basic
geometrical network properties, such as the size dependence of the number of links and the in- and out-degree
distributions. We also compare our predictions with real networks where the node degree also grows slowly
with time—the Internet and the citation network of allPhysical Reviewpapers.
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I. INTRODUCTION

Many networks in nature and technology are sparse, i.e.,
the average node degree is much smaller than the total num-
ber of nodesN f1,2g. Widely studied classes of networks,
such as regular grids, random graphs, and scale-free net-
works, are maximally sparse, as the average node degree
remains finite asN→`. However, in other examples of real
sparse networks, such as the Internet, the average node de-
gree grows, albeit very slowly, with system size. Motivated
by this observation, we introduce a simple network growth
mechanism of copying that naturally generates sparse net-
works in which the average node degree diverges logarith-
mically with system size. We dub these log-networks. Analo-
gous results appear in previous investigations of related
modelsf3,4g, while models where a slowly increasing ratio
of links to nodes is imposed externally have also been con-
sideredf5,6g.

To motivate the copying mechanism for log-networks, let
us recall the growing network with redirectionsGNRd f7g.
The GNR is built by adding nodes according to the following
simple rule. Each new node initially selects an earlier “tar-
get” node at random. With a specified probability, a link from
the new node to the target node is created; with a comple-
mentary probability, the link is redirected to the ancestor
node of the target. Although the target node is chosen ran-
domly, the redirection mechanism generates an effective
preferential attachment because a high-degree node is more
likely to be the ancestor of a randomly selected node. By this
feature, redirection leads to a power-law degree distribution
for the network. The GNR thus provides an appealingly
simple mechanism for preferential attachment, as well as an
extremely efficient way to simulate large scale-free networks
f8g.

The growing network with redirection is a simplification
of a previous modelf9g which was proposed to mimic the
copying of links in the world-wide web. In this web model, a

new node links to a randomly chosen target node and also to
its ancestor nodesssubject to a constraint on the maximum
number of links createdd. In the context of citations, copying
is sregrettablyd even more natural, as it is easier merely to
copy the references of a cited paper rather than to look at the
original referencesf10g. As the literature grows, the copying
mechanism will necessarily lead to later publications having
more references than earlier publications.

In the following sections, we analyze a growing network
model with copyingsGNCd. We consider a model with no
global bound on the number of links emanating from a new
node. We shall see that this simple copying mechanism gen-
erates log-networks. We will use the master equation ap-
proach to derive basic geometric properties of the network.
We then compare our prediction about the logarithmic
growth of the average degree with data fromPhysical Re-
view citations.

II. GNC MODEL

We now define the GNC model precisely. The network
grows by adding nodes one at a time. A newly introduced
node randomly selects a target node and links to it, as well as
to all ancestor nodes of the target nodesFig. 1d.

If the target node is the initial root node, no additional
links are generated by the copying mechanism. If the newly
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FIG. 1. Illustration of the growing network with copying
sGNCd. The time order of the nodes is indicated. Initial links are
solid and links to ancestor nodes are dashed. Later links partially
obscure earlier links. The new node initially attaches to random
target node 4, as well as to its ancestors, 1 and 3.
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introduced node were to always choose the root node as the
target, a star graph would be generated. On the other hand, if
the target node is always the most recent one in the network,
all previous nodes are ancestors of the target and the copying
mechanism would give a complete graph. Correspondingly,
the total number of linksLN in a network ofN nodes can
range fromN−1 sstar graphd to NsN−1d /2 scomplete graphd.
Notice also that the number of outgoing links from each new
node sthe out-degreed can range between 1 and the current
number of nodes.

III. NETWORK STRUCTURE

We now study geometric properties of the GNC model by
the master equation approach. We determine how the total
number of linksL grows with N, as well as the in-degree,
out-degree, and the joint in/out-degree distributions.

A. Total number of links

Let LsNd be the average value of the total number of links
in a network ofN nodes. If a newly introduced node selects
a target node withj ancestors, then the number of links
added to the network will be 1+j . Therefore, the average
total number of links satisfies

LsN + 1d = LsNd +
1

NKo
a

s1 + jadL = LsNd + 1 +
LsNd

N
.

s1d

The factorN−1 in the first line assures that a target nodea is
selected uniformly from among allN nodes, and we obtain
the second line by employing the sum rulekoa jal=L.

Dividing Eq. s1d by N+1 gives

LsN + 1d
N + 1

−
LsNd

N
=

1

N + 1
,

and then summing both sides from 1 toN−1 gives the solu-
tion

LsNd = NsHN − 1d. s2d

Here HN=on=1
N n−1 is the harmonic number.fFor concrete-

ness, we assume that the network starts with a single node,
so that Ls1d=0.g Using the asymptotics of the harmonic
numbersf11g, we find

LsNd = N ln N − Ns1 − gd +
1

2
−

1

12N
+ ¯ , s3d

whereg=0.577 215 66. . . is the Euler constant. The leading
asymptotic behavior ofN ln N can also be obtained more
easily from Eq.s1d by taking the continuum approximation
and solving the resulting differential equation.

Thus we conclude that the average degree of the network
grows logarithmically with the system size; that is, the copy-
ing mechanism generates a log-network. This simple phe-
nomenon is one of our major results.

We now briefly discuss the probability distribution of the
total number of linksPNsLd for a network ofN nodes. Simu-

lations show that the distribution is asymmetric and quite
broad sFig. 2d. To understand the origin of the asymmetry,
notice that both the extreme cases of the star graphsL=N
−1d and the complete graphfL=NsN−1d /2g each occur with
probability

PNsLd =
1

sN − 1d!
,

because each new node must select one specific target node.
Therefore, the distribution of the total number of links van-
ishes much more sharply near the lower cutoff.

Near the peak, however, the distributionPNsLd is symmet-
ric about the average. More precisely, when the deviation
from the averageLsNd=oLLPNsLd is of the order ofSsNd
=ÎoLfL−LsNdg2PNsLd, the distribution approaches a sym-
metric Gaussian shape. The value of the standard deviation
asN→` is

SsNd → CN, C = Î2 − p2/6 = 0.595 874 . . . , s4d

as derived in Appendix A. The relative width of the distribu-
tion is measured by the standard deviationSsNd divided by
the averageLsNd; this ratio approaches zero assln Nd−1 when
N→`, so that fluctuations die out slowly. This slow decay of
fluctuations explains why the distributionsFig. 2d remains
wide for largeN and why it looks asymmetric near the peak.

The GNC model can be extended to allow for wider copy-
ing variability. For example, instead of linking to one initial
random target node, we can link tom random initial targets.
Further, we can link to each target node with probabilityp
and to each of the corresponding ancestors with probability
q. For this generalsm,p,qd model, the analog of Eq.s1d is
f12g

FIG. 2. Distribution of the number of linksPNsLd for 105 real-
izations of a GNC ofN=1000 sites. Shown are both the raw data
and the result of averaging the data over a 1% range. For this value
of N, the mean number of links is 6485.56, while Eq.s3d gives
6485.47… .
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LsN + 1d = LsNd +
m

NKo
a

sp + qjadL s5d

which reduces todL/dN=mp+mqsL /Nd in the continuum
approximation. The asymptotic growth of the average total
number of links crucially depends on the parametermq,

LsNd =5
mp

1 − mq
N for mq, 1,

mpNln N for mq= 1,

~ Nmq for mq. 1.
6 s6d

Thus incomplete copying leads to an average node degree
that is independent ofN whenmq,1, while marginal loga-
rithmic dependence is recovered whenmq=1. There is also a
pathology formq.2, as the number of links in the network
would exceed that of a complete graph with the same num-
ber of nodes. In this case, it is not possible to accommodate
all the links specified by the copying rule without having a
multigraph, i.e., allowing for more than one link between a
given pair of nodes.

B. Comparison with empirical data

We now present empirical data from the citation network
of Physical Reviewto test whether the average degree of
these networks grows with time, and if so, whether the
growth is consistent with log-networks. Data from all issues
of Physical Reviewjournals are available, encompassing a
time span of 110 yearsf13g. From these data, we have the
following evidence that citations may be described as a log-
network. Specifically, the average number of references in
the reference list of eachPhysical Reviewpaper grows sys-
tematically with time and is consistent with a linear increase
sFig. 3d. Additionally, the number ofPhysical Reviewpapers
published in a given year roughly grows exponentially with
time f13g. Thus the cumulative number ofPhysical Review
papers up to a given year also grows exponentially. As a
result, the number of references should grow logarithmically
with the total number of available papers. This behavior is
reasonably consistent with the data of Fig. 3.

In a related vein, the average number of coauthors per
paper has grown slowly with time, due in part to the growing
trend for collaborative research and the continuing ease of
long-distance scientific interaction. While coauthorship and
other collaboration networks have recently been investigated
ssee, e.g.,f14–16gd, the analysis has primarily been on net-
work properties at a fixed time. There is, however, one study
of the number of mathematics papers with one, two, and
more authors since 1940f17g. These data show that the frac-
tion of singly authored papers is decreasing systematically,
while the number of multiple-authored papers is steadily
growing. Thus it should be interesting to track the time de-
pendence of the number of coauthors in scientific publica-
tions from the current studies of collaboration networks.

Interestingly, the Internet and the world wide web exhibit
certain similarities with log-networks. For example, the total
number of links exceeds the total number of nodes in the
world wide web by about an order of magnitudef18,19g.

Similarly for the Internet, specifically for the Autonomous
SystemssASd graph, the average number of links per node is
also growing slowly but systematically with timef20g.
Qualitatively these behaviors are consistent with our expec-
tations from log-networks. It is still not possible to reach
definitive conclusions about the precise growth rate onN
since the available data for the AS graphf20g cover a time
period when the total number of ASs has increased only by a
factor of 4 sfrom N=3060 in 1997 toN=12 155 in 2001d.

C. In-degree distribution

By its very construction, the links of the GNC network
are directed and there is an in-degreei and an out-degreej
for each nodesFig. 4d, and thus two distinct corresponding
degree distributions. In this subsection, we study the in-
degree distribution.

FIG. 3. sColor onlined Average number of references in the ref-
erence list ofPhysical Reviewpapers published in each yearssd.
Also shown as a smooth curve is the logarithm of the cumulative
number ofPhysical Reviewpapers that were published up to each
year. The value 5 is subtracted from the latter data to make the two
datasets lie in the same range.

FIG. 4. A node with in-degreesnumber of incoming linksd
i =4, out-degreesnumber of outgoing linksd j =5, and total degree
k=9.
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Let PisNd be the average number of nodes with in-degree
i in a network consisting ofN total nodes. This distribution
satisfies

PisN + 1d = PisNd −
i + 1

N
PisNd +

i

N
Pi−1sNd + di,0. s7d

The loss term accounts for the following two processes:sad
either a node of in-degreei, or sbd any of itsi daughter nodes
was chosen as the target. Either of these processes leads to
the loss of a node with in-degreei. The total loss rate of
PisNd is thussi +1d /N. The gain term is explained similarly,
and the last term on the right-hand side of Eq.s7d describes
the effect of the introduction of a new node with no incom-
ing links. Finally, notice that Eqs.s7d hold for i øN. When
i =N, there is no longer a loss term and the master equation
reduces toPNsN+1d=PN−1sNd=1. This accounts for the fact
that the root node is necessarily linked to all other nodes and
therefore there is one node with degreeN−1 in a network of
N nodes.

We compute the in-degree distribution by induction. Solv-
ing for the first few PisNd for small i directly, we find a
simple form for the general case that we then check solves
the master equations7d. We thus find

PisNd =
N

si + 1dsi + 2d
for i , N − 1, s8d

while PisNd=0 for i ùN.
The asymptotici−2 decay agrees with the logarithmic di-

vergence for the average node degree from the previous sec-
tion, and perhaps explains the proliferation of exponent val-
ues close to 2 for the in-degree distribution that are observed
in empirical studies of collaboration networksf14–16g and in
the world wide webf18,19,21–23g. In particular, a compre-
hensive study by Broderet al. f18g reports an exponent value
2.09, while a recent work by Donatoet al. f19g srelying on
the WebBase project at Stanfordf24gd quotes an exponent
value 2.1.

D. Out-degree distribution

To determine the out-degree distribution, it is helpful to
think of the network as a genealogical tree, as illustrated in
Fig. 5 ssee alsof7g for this constructiond. Initially the net-
work consists of one root node. Subsequent nodes that attach
to the root node will have out-degree 1 and lie in the first
layer. Similarly, a new node that attaches to a node with
out-degree 1 lies in the second layer. By the copying mecha-
nism, nodes in this second layer also link to the root and
therefore have out-degree 2. Nodes in thenth layer directly
attach to a node in thesn−1dst layer and, by virtue of copy-
ing, also attach to one node in every previous layer. Thusnth
layer nodes have out-degreen. We now use this genealogical
tree picture to determine the out-degree distribution of the
network.

Let QjsNd be the average number of nodes with out-
degreej in a network consisting ofN nodes. By definition,
Q0sNd;1. On the other hand, the number of nodes with
out-degreej ù1 grows each time a node with out-degree
j −1 is selected as the target node. The out-degree distribu-
tion thus satisfies the master equation

QjsN + 1d = QjsNd +
1

N
Qj−1sNd. s9d

This equation applies even forj =0 if we set Q−1sNd;0.
Using the recursive nature of these equations, we first solve
for Q1sNd, then Q2sNd, etc., and ultimately the out-degree
distribution for all j . This procedure gives

QjsN + 1d = o
1øm1,¯,mjøN

1

m1 3 ¯ 3 mj
. s10d

Equivalently, we can recast thej-fold sums into simple sums,
although the results look less neat. For example,

Q2sN + 1d =
1

2
fsHNd2 − HN

s2dg,

whereHN
s2d=on=1

N n−2. The asymptotic behaviors ofHN, HN
s2d,

and other generalized harmonic numbers are knownf11g, and
the resulting asymptotics of the out-degree distribution are

Q1sN + 1d = HN = ln N + g +
1

2N
−

1

12N2 + ¯ ,

Q2sN + 1d =
1

2
sln Nd2 + g ln N +

1

2
Fg2 −

p2

6
G + ¯

and analogous results hold forQjsNd for larger j .
If we merely want to establish the leading asymptotic be-

havior, we can replace the summation in Eq.s10d by integra-
tion. This then leads to the simple result

QjsNd → sln Nd j

j !
. s11d

Alternatively, we can derive this result within a continuum
approach by replacing finite differences by derivatives in the
large-N limit of Eq. s9d. The procedure recasts the discrete

FIG. 5. Genealogical tree representation of the network of Fig.
1, with nodes arranged in layers left to right according to their
out-degree. The initial layer contains only the root node. The num-
ber of nodes in subsequent layers increases as the network grows.
The initial links are shown as solid arrows and the copied links as
dashed arrows.
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master equations into the differential equations

dQj

dN
=

1

N
Qj−1sNd

whose solution is indeed Eq.s11d.
The Poisson form of the out-degree distribution contra-

dicts the commonly presumed power-law form. There is pre-
vious literature by Broderet al. that suggested that the out-
degree distribution has a power-law tail, with an exponent
close to 2.7f18g. However, this work also noted that a power
law is not a good fit to the data and that the out-degree
distribution may possibly follow a Poisson distribution. In
fact, the analysis of Ref.f19g that is based on more recent
data on the structure of the webf24g convincingly shows that
a power law does not fit the out-degree distribution.

E. Joint degree distribution

We define the joint degree distributionNi,jsNd as the av-
erage number of nodes with in-degreei and out-degreej in a
network ofN nodes. The in- and out-degree distributions can
then be distilled from the joint distribution viaPisNd
=o jNi,jsNd and QjsNd=oiNi,jsNd. Furthermore, the average
number of nodes with total degreek is simply given by
NksNd=oi+j=kNi,jsNd.

The joint degree distribution satisfies

Ni,jsN + 1d = Ni,jsNd +
i

N
Ni−1,jsNd −

i + 1

N
Ni,jsNd

+
1

N
Qj−1sNddi,0, s12d

which is an obvious generalization of the governing equa-
tions s7d ands9d for the separate in- and out-degree distribu-
tions. Because of the presence of the last out-degree term on
the right-hand side of Eq.s12d, the scaling of the joint degree
distribution with system size does not hold:Ni,jsNdÞNni,j.
Therefore, we cannot reduce Eq.s12d to an N-independent
recursion.

Nevertheless, Eqs.s12d still have the important simplify-
ing feature of being recursive and thus soluble in an induc-
tive fashion. Thus, for example, fori =0 we have

NN0,jsN + 1d = sN − 1dN0,jsNd + Qj−1sNd

from which

N0,jsN + 1d =
1

N
o
M=1

N

Qj−1sMd. s13d

For i ù1, we rewrite Eqs.s12d in the form

NNi,jsN + 1d = sN − i − 1dNi,jsNd + iNi−1,jsNd. s14d

Now the substitution

Ni,jsNd =
GsN − i − 1dGsi + 1d

GsNd
Ai,jsNd s15d

reduces Eq.s14d to the constant-coefficient recursion

Ai,jsN + 1d = Ai,jsNd + Ai−1,jsNd

that allows us to expressAi,j via Ai−1,j,

Ai,jsN + 1d = o
M=1

N

Ai−1,jsMd. s16d

From Eq.s15d, we find A0,jsN+1d=N−1N0,jsN+1d which,
in conjunction with Eq.s13d, gives

A0,jsN + 1d = o
M=1

N

Qj−1sMd. s17d

Therefore, starting withA0,j from Eq. s17d, we find all the
Ai,j via Eq. s16d. The final result is

Ai,jsNd = o
1øm0,¯,mi,N

Qj−1sm0d. s18d

Equationss10d, s15d, and s18d give the full solution for the
joint degree distribution.

While the complete solution is cumbersome, it can be
simplified asN→`. In this limit, we can first replace the
factor GsN− i −1d /GsNd by N−i−1 in Eq. s15d. Additionally,
we can replace the summation in Eq.s18d by integration.
These two replacements are justified wheni !ÎN. Finally,
using Eq.s11d and after some algebra, we find the leading
behavior

N0,jsNd → sln Nd j−1

s j − 1d!

and more generally

Ni,jsNd → F sln Nd j−1

s j − 1d! G i+1

. s19d

Because the Poisson form the out-degree distribution holds
only whenj ! ln N, the generalized Poisson forms11d for the
joint degree distribution is also valid only forj ! ln N.

FIG. 6. The in-ssd, out- snd, and totals,d degree distributions
for 104 realizations of a network ofN=104 nodes. Notice that there
is always one node with total degree equal to 1 and one node with
in- and total degree equal toN. The smooth curve that follows in
in-degree data is the asymptotic predictions8d, while the curve that
follows the out-degree data is the asymptotic predictions11d.
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Finally, although the total degree distributionNksNd does
not satisfy a closed equation, we can obtain this distribution
indirectly. Whenk is of the order of lnN or smaller, we can
use Eq. s19d to find NksNd. The situation in the range
k@ ln N is even simpler: In this region, the total degree dis-
tribution essentially coincides with the in-degree distribution
and thereforeNksNd→Nk−2 sFig. 6d.

IV. SUMMARY

We introduced a growing network model that is based on
node addition plus a simple copying mechanism—the
GNC—that leads to an average node degree growing loga-
rithmically with the total number of nodesN. This feature
may account for the intriguing phenomenon observed in
many real networks that the number of links increases
slightly faster than the number of nodes. Copying arises
naturally in the context of citations; a not untypical scenario
is that an author will be familiar with a few primary refer-
ences, but may simply copy secondary references from pri-
mary ones.

We solved the underlying master equations for the GNC
model and showed that the in-degree distribution is a power-
law over its entire range, while the out-degree distribution is
asymptotically Poissonian. The total degree distribution is
consequently a hybrid of the power-law and Poisson forms.
There is, on average, one node with total degree equal to 1,
and there is always one node—the root—that has in-degree
equal toN−1. Thus the node degree ranges from 1 toN−1.
Since the distribution ofL has a width that scales linearly
with N while LsNd grows asN ln N, fluctuations in node
degree are appreciable even for very large networks. Finally,
each node is connected to the root, so that the network di-
ameter equals 2, independent ofN.

From long-termPhysical Reviewpublication data, the av-
erage number of references per papersthe out degreed grows
slowly with the total literature size, consistent with the loga-
rithmic growth predicted by the GNC model. However, this
growth in the GNC model is not robust when parameters that
quantify the extent of copying are varied. The apparent loga-
rithmic growth for the average number of references per pa-
per inPhysical Reviewis thus a bit surprising, and it will be
worthwhile to test whether logarithmic growth arises in a
wider range of empirical networks.
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APPENDIX: FLUCTUATIONS

In this appendix, we find the variance in the distribution
of the number of linksPNsLd. We start by computing the
first two moments of the out-degree distribution,

uN;k jl=o j jQjsNd /N and vN;k j2l. We then use these re-
sults to derive the variance ofPNsLd.

To determineuN andvN, we can in principle use Eq.s10d.
However, a direct approach is more useful. Starting with
NuN=ko jl, we find that adding a new node leads to the re-
cursion relation

sN + 1duN+1 = k1 + ja + o jl = 1 +uN + NuN, sA1d

which is nothing but Eq.s1d. In a similar manner, we derive
a recursion relation forNvN=ko j2l,

sN + 1dvN+1 = ks1 + jad2 + o j2l = 1 + 2uN + vN + NvN,

which reduces to

vN+1 = vN +
2

N + 1
uN +

1

N + 1
. sA2d

The variances2sNd=vN−suNd2 therefore satisfies

s2sN + 1d = s2sNd +
1

N + 1
−

1

sN + 1d2 . sA3d

From this simple recursion, we get

s2sNd = HN − HN
s2d. sA4d

The relative magnitude of fluctuations dies out slowly, as the
standard deviationssNd,Îln N divided by the average
uN, ln N approaches zero assln Nd−1/2.

Consider now the average number of links in the network
LsNd=ko jl=NuN and the corresponding second moment
L2sNd;kLN

2l. After the addition of a new node, the second
moment changes according to

L2sN + 1d = ks1 + ja + o jd2l
= ks1 + jad2 + 2o j + 2ja o j + so jd2l
= 1 + 2uN + vN + 2NuN + S1 +

2

N
DL2sNd.

Now we useLsNd=ko jl=NuN to write the square of Eq.
sA1d in the form

LsN + 1d2 = S1 +
2

N
DLsNd2 + suNd2 + 2sN + 1duN + 1,

and then subtracting this from the previous equation, the
varianceS2sNd=L2sNd−LsNd2 satisfies

S2sN + 1d = S1 +
2

N
DS2sNd + s2sNd. sA5d

The homogeneous part of Eq.sA5d suggests seeking a
solution of the formS2sNd=NsN+1dSN. This substitution re-
casts Eq.sA5d into SN+1−SN=fsN+1dsN+2dg−1s2sNd. This is
an exact discrete first derivative forSN. HenceSN equals
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o1
N−1fsM +1dsM +2dg−1s2sMd. Thus the variance is

S2sNd = NsN + 1d o
M=1

N−1
s2sMd

sM + 1dsM + 2d
. sA6d

Finally, by substitutings2sMd=o jøMs j−1− j−2d from Eqs.
sA4d into sA6d, and changing the order of the two sums, we
find that S2sNd→ s2− 1

6p2dNsN+1d as N→`. This leads to
the asymptotic expression for the standard deviation given in
Eq. s4d.
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