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Abstract second one is to compute the matrix inversion on the fly,

say, through power iteration @nTheFly method). The

How closely related are two nodes in a graph? How first method is fast on query time, but prohibitive on space
to compute this score quickly, on huge, disk-resident, real (quadratic on the number of nodes on the graph), while the
graphs? Random walk with restart (RWR) provides a good second is slow on query time.
relevance score between two nodes in a weighted graph, Here we propose a novel solution to this challenge.
and it has been successfully used in numerous settingsQur approach, B.IN, takes the advantage of two prop-
like automatic captioning of images, generalizations to erties shared by many real graphs: (a) the block-wise,
the “connection subgraphs”, personalized PageRank, and community-like structure, and (b) the linear correlations
many more. However, the straightforward implementations across rows and columns of the adjacency matrix. The pro-
of RWR do not scale for large graphs, requiring either posed method carefully balances the off-line pre-proogssi
guadratic space and cubic pre-computation time, or slow cost (both the CPU cost and the storage cost), with the re-
response time on queries. sponse quality (with respect to both the accuracy and the

We propose fast solutions to this problem. The heart of response time). Compared RseComputeit only requires
our approach is to exploit two important properties shared pre-computing and storing the low-rank approximation of
by many real graphs: (a) linear correlations and (b) block- a large but sparse matrix, and the inversion of some small
wise, community-like structure. We exploit the lineariyy b  size matrices. Compared wi@nTheFly it only need a few
using low-rank matrix approximation, and the community matrix-vector multiplication operations in on-line resise
structure by graph partitioning, followed by the Sherman- process.
Morrison lemma for matrix inversion. Experimental results ~ The main contributions of the paper are as follows:
on the Corel image and the DBLP dabasets demonstrate ) i ,
that our proposed methods achieve significant savings over ® A Novel, fast, and practical solution (BN and its
the straightforward implementations: they can saeeeral derivative, NBLIN);

ordersof magnitude in pre-computation and storage cost,  Theoretical justification and analysis, giving an error
and they achieve up to 150x speed up with 90%+ quality bound for NBLIN:

preservation.
e Extensive experiments on several typical applications,
with real data.
1 Introduction The proposed method is operational, with careful de-

sign and numerous optimizations. Our experimental results

Defining the relevance score between two nodes is oneshow that, in general, it preserves 90%-+ quality, while (a)
of the fundamental building blocks in graph mining. One saves several orders of magnitude of pre-computation and
very successful technique is based on random walk withstorage cost ovePreCompute and (b) it achieves up to
restart (RWR). RWR has been receiving increasing interest150x speedup on query time ov@nTheFly Figure (1)
from both the application and the theoretical point of view shows some results for the auto-captioning application as
(see Section (5) for detailed review). An important researc in [22].
challenge is its speed. especially for large graphs. The rest of the paper is organized as follows: the pro-

Mathematically, RWR requires a matrix inversion. There posed method is presented in Section 2; the justification and
are two straightforward solutions, none of which is scal- the analysis are provided in Section 3. The experimental re-
able for large graphs: The first one is to pre-compute andsults are presented in Section 4. The related work is given
store the inversion of a matrixPreComputémethod); the in Section 5. Finally, we conclude the paper in Section 6.



Table 1. Symbols
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the weighted graph, <i,j <n

the normalized weighted matrix associated viWh

the within-partition matrix associated wit

the cross-partition matrix associated wi¥i

the system matrix associated wii: Q = I — ¢W

n X n matrix,D; ; = Zj w; ; andD; ; = 0 fori # j

n X t node-concept matrix

t x t concept-concept matrix

t x n concept-node matrix

a block matrix, whose elements are all zeros

n x 1 starting vector, the!” elementl ando for others
n x 1 ranking vectory; ; is the relevance score of noglevrt node:
the restart probability) < ¢ <1

the total number of the nodes in the graph

the number of partitions

the rank of low-rank approximation

the maximum iteration number

the threshold to stop the iteration process

the threshold to sparse the matrix

‘Jet’ ‘Plane’ ‘Runway’

Automatic image captioning. The proposed method and

steady-state probability; ; that the particle will finally stay
at nodej [22].
7 = cW7 + (1 - )¢ ()

Equation (1) defines a linear system problem, whére
is determined by:

“Texture’ ‘Candy’ ‘Background’ o= (1—-¢ - CVV)_lé}

(1-0)Q7'e 2

OnTheFlyoutput the same result within 0.04 seconds and  The relevance score defined by RWR has many good

4.5 seconds, respectively.

Figure 1. Application examples by RWR

2 Fast RWR

2.1 Preliminary

Table 1 gives a list of symbols used in this paper.

Random walk with restart is defined as equation (1) [22]:
consider a random particle that starts from nadghe par-
ticle iteratively transmits to its neighborhood with th@lpr
ability that is proportional to their edge weights. Also at
each step, it has some probabilityo return to the node.

properties: compared with those pair-wise metrics, it can
capture the global structure of the graph [14]; compared
with those traditional graph distances (such as shortéist pa

maximum flow etc), it can capture the multi-facet relation-

ship between two nodes [26].

One of the most widely used ways to solve random walk
with restart is the iterative method, iterating the equafib
until convergence, that is, until th&, norm of successive
estimates of; is below our threshold;, or a maximum iter-
ation stepm is reached. In the paper, we refer it@aThe-

Fly method. OnTheFlydoes not require pre-computation
and additional storage cost. Its on-line response timais li
ear to the iteration number and the number of etigekich
might be undesirable when (near) real-time response is a

The relevance score of nogewrt nodei is defined as the IHere, we stordV in a sparse format.



crucial factor while the dataset is large. A nice observa-

Table 2. B_LIN

tion of [25] is that the distribution of; is highly skewed.
Based on this observation, combined with the factor that
many real graphs has block-wise/community structure, the
authors in [25] proposed performing RWR only on the par-
tition that contains the starting poin{methodBIk). How-
ever, for all data points outside the partitiof,; is simply
set0. In other wordsBIk outputs a local estimation &f.

On the other hand, it can be seen from equation (2) that
the system matriXQ defines all the steady-state probabil-
ities of random walk with restart. Thus, if we can pre-
compute and stor® !, we can gef; real-time (We refer to
this method a®reCompute However, pre-computing and
storingQ~! is impractical when the dataset is large, since
it requires quadratic space and cubic pre-computétion

On the other hand, linear correlations exist in many real
graphs, which means that we can approximiafeby low-
rank approximation. This property allows us to approximate
Q! very efficiently. Moreover, this enables a global esti-
mation of 7, unlike the local estimation obtained IBIk.

Input: The normalized weighted matr®v and the
starting vectog;

Output: The ranking vector;

Pre-Computational Stage(Off-Line):

pl. Partition the graph intb partitions by METIS [19];

p2. DecomposdV into two matricesW = W; + W,
according to the partition result, wheW, contains
all within-partition links andW’, contains all cross-
partition links;

p3. LetW ; be thei*" partition, denotéV, as
equation(3);

p4. Compute and stol®; ; = (I — cWy ;)= for
each partition;

p5. Do low-rank approximation foW, = USV;

p6. DefineQ; ! as equation (4). Compute and store
A=(S"'-cvQilu)L.

Query Stage (On-Line):

gl. Output; = (1 — ¢)(Q; '€ + Q' UAVQ; '€).

However, due to the low rank approximation, such kind of
estimation is conducted at a coarse resolution.

2.2 Algorithm

It should be pointed out that all the above normalization

methods can be fitted into the proposed BIl. However,

in this paper, we will focus on the normalized graph Lapla-

In summary, the skewed distribution @fand the block-
wise structure of the graph lead to a local/fine resolution
estimation; the linear correlations of the graph lead to a
global/coarse resolution estimation. In this paper, we-com
bine these two properties in a unified manner. The proposed
algorithm, BLIN is shown in table (2).

Wi 0 .. 0
VNVl _ 0 Wi .. 0 3)
0 0 Wy
Qi 0 .. o
Q- 0 Q35 .. O 4
0 .. 0 Q;

2.3 Normalization on W

B_LIN takes the normalized matri% as the input.
There are several ways to normalize the weighted ma-
trix W. The most natural way might be by row nor-
malization [22]. Complementarily, the authors in [27]
propose using the normalized graph LapaliciaV (=
D~'/2WD~1/2). In [26], the authors also propose penal-

ciar? for the following reasons:

e For real applications, these normalization methods of-
ten lead to very similar results. (For cross-media corre-
lation discovery, our experiments demonstrate that nor-
malized graph Laplacian actually outperforms the row
normalization method, which is originally proposed by
the authors in [22]

e Unlike the other two methods, normalized graph
Laplacian outputs the symmetric relevance score (that
isr;; = rj;), which is a desirable property for some
applications.

e The normalized graph Laplacian is symmetric, and it
leads to a symmetri€;, which will save50% storage
cost.

e It might be difficult to develop an error bound for
B_LIN in the general case. However, as we will show
in Section 3.3, it is possible to develop an error bound
for the simplified version (NBLIN) of B _LIN, which
also benefits from the symmetric property of the nor-
malized graph Laplacian.

izing the famous nodes before row normalization for social
network.

2Even if we useOnTheFlyto compute each column @ 1, the pre-
computation cost is still linear to the number of node

3|t should be pointed out that strictly speakir is no longer a proba-

bility distribution. However, for all the applications wewer in this paper,
it does not matter since what we need is a relevance score. eJutliler
hand, we can always normalizégdto get a probability distribution.



2.4 Partition number k: case study

The partition numbet: balances the complexity 3V
andW,. We will evaluate different values fdr in the ex-
periment section. Here, we investigate two extreme cases 0
k.

First, if k = 1, we haveW; = W andW, = 0. Then,
B_LIN is just equivalent to th&reComputenethod.

On the other hand, it = n, we haveW; = 0 and
W, = W. In this caseQ; = I and we have the following
simplified version of BLIN as in table(3). We refer it as
NB_LIN.

Table 3. NB_LIN
Input: The normalized weighted matr®% and the
starting vectog;
Output: The ranking vectof;
Pre-Computational Stage(Off-Line):
pl. Do low-rank approximation foW = USV;
p2. Compute and stork = (S~! — ¢VU) L.
Query Stage (On-Line):
ql. Output’; = (1 — ¢)(¢; + cUAVE).

2.5 Low-rank approximation on W,

One natural choice to do low-rank approximatior\dh
is by eigen-value decomposititin

W, = Usu” (5)

where each column df/ is the eigen-vector oW, andS

is a diagonal matrix, whose diagonal elements are eigen-

values ofW,.

The advantage of eigen-value decomposition is that it is
‘optimal’ in terms of reconstruction error. Also, sind& =
UT in this situation, we can sav#% storage cost. How-
ever, one potential problem is that it might lose the spar-
sity of original matrixW. Also, whenW is large, doing

Table 4. Low Rank Approximation by Partition

Input: The cross-partition matriXV, and¢

Output: Low rank approximation oW,: U, S,V

1. PartitionW,, into ¢ partitions;

2. Construct am x t matrix U. Thei'” column of U is
the sum of all the columns &V, that belong to the
it" partition;

3. Computes = (UTU)~ 1,

4. ComputeV = UTW,.

f

3 Justification and Analysis

3.1 Correctness

Here, we present a brief proof of the proposed algorithms

3.1.1 BLIN

Lemmal If W = W, + USV holds, BLIN outputs ex-
actly the same result @&&reCompute

Proof: Since W, is a block-diagonal matrix. Based on
equation (3) and (4), we have
(I-cWy) ™' =Q7! 6)

Then, based on the Sherman-Morrison lemma [23], we
have:

A = (S'-evQitu)Tt
I-cW)™! = (I-c¢W; —cUSV)™?
= Q7'+ cQ7'UAVQ;!

o= (1-0)(Q7'e + Q' UAVQ; té)

which completes the proof of Lemma 1. It can be seen that
the only approximation of B.IN comes from the low-rank
approximation fofW,.

We can also interpret BIN from the perspective of la-
tent semantic/concept space. By low-rank approximation
on'W,, we actually introduce &x ¢ latent concept space by

eigen-value decomposition itself might be time-consuming S. Furthermore, if we treat the origin&V as am x n node

To address this issue, in this paper, we also propose th&pace,U and V actually define the relationship between
following heuristic to do low-rank approximation as in ta- these two spaced for node-concept relationship and

ble (4). Its basic idea is that, firstly, construct by par-

titioning W»; and then use the projection &, on the

sub-space spanned by the column¥Jads the low-rank ap-
proximation.

4if the other two normalization methods are used, we can do Eingu
vector decomposition instead.

for concept-node relationship). Thus, it can be seen that,
instead of doing random walk with restart on the original
whole node space, BIN decomposes it into the following
simple steps:

(1) Doing RWR within the partition that contains the start-
ing point (multiply¢; by Q7 );



(2) Jumping from node-space to latent concept space Thus, instead of solving the inversion of the original

(multiply the result of (1) by);

(3) Doing RWR within the latent concept space (multiply
the result of (2) byA);

(4) Jumping back to the node space(multiply the result of
(3) by U);

(5) Doing RWR within each partition until convergence
(multiply the result of (4) byQ; ).

3.1.2 NBLIN

Lemma 2 If W = USV holds, NBLIN outputs exactly
the same result aBBreCompute

Proof: TakingW; = 0 andQ; = I, by applying Lemma
1, we directly complete the proof of Lemma 2.

3.2 Computational and storage cost

In this section, we make a brief analysis for the proposed
algorithms in terms of computational and storage cost. For
the limited space, we only provide the result failLBN.

3.2.1 On-line computational cost

Itis not hard to see that, at the on-line query stage_&i8
(table 2, step q1), we only need a few matrix-vector mul-
tiplication operations as shown in equation (7). Therefore
B_LIN is capable of meeting the (near) real-time response
requirement.

o — Qi'é

7 — Vi

7 AT

o o« U

7o QU'F

7 (=) (7o +cry) (7)

3.2.2 Pre-computational cost

The main off-line computational cost of the proposed algo-
rithm consists of the following parts:

1)
)
®)
(4)

partitioning the whole graph;
inversion of eacti — ¢cW1 ;, (i = 1, ..., k);
low-rank approximation ofW;

inversion of(S~! — VQ;'U).

n x n matrix, B.LIN1) inversesk + 1 small matrices(Qi,},

i=1,....k, andA); 2) computes a low-rank approximation of
a sparser x n matrix (Ws), and 3) partitions the whole
graph.

3.2.3 Pre-storage cost

In terms of storage cost, we have to stbre 1 small matri-
ces Qi}, (i=1,..,k), andA), onen x ¢ matrix (U) and
onet x n matrix (V). Moreover, we can further save the
storage cost as shown in the following:

e An observation from all our experiments is that many
elements inQi,}, U andV are near zeros. Thus, an
optional step is to set these elements to be zero (by
the threshold,) and to store these matrices as sparse
format. For all experiments in this paper, we find that
this step will significantly reduce the storage cost while
almost not affecting the approximation accuracy.

The normalized graph Laplacian is symmetric, which
leads to 1) a symmetriQ;}, and 2)U = V7, if
eigen-value decomposition is used when computing
the low-rank approximatioh By taking advantage of
this symmetry property, we can further save 50% stor-
age cost.

3.3 Error Bound

Developing an error bound for the general case of the
proposed methods is difficult. However, for NBN (table
3), we have the following lemma:

Lemma 3 Letandi be the ranking vectorsby PreCom-
puteand by NBLIN, respectively. If NBLIN takes eigen-
value decomposition as low-rank approximatiof; —
o <(1—0) X, ﬁ where); is thei'” largest
eigen-value oW.

Proof: Taking the full eigen-value decomposition f:

®)

where )\; and u; are thei'” largest eigen-value and the
corresponding eigen-vector iV, respectively. U
[u1,...uy], andS = diag(Aq, ..., \pn)

Notew, - uT = I. We have:

2

50n the other hand, if we use partition-based low-rank agpration
as in table (4),U andV are usually sparse and thus can be efficiently
stored

SHere, we ignore the low scriptof 7 and7* for simplicity



o AP

A = (87'-cUTU)! The author-paper information of DBLP dataset [4] is
n \; T used to construct the weighted graghas in equation?(?):
= Z m CUG UG 9) every author is denoted as a nodd¥ and the edge weight
i=1 ’ is the number of co-authored papers between the corre-
By Lemma 2, we have: sponding two authors. On the whole, there are315K
nodes andv 1,834 K non-zero edges iWV.
N All the above datasets are summarized in table(5):
1
r= (I—C)Zm ‘Ui'u;r'éz"
i=1 ! Table 5. Summary of data sets
t
- 1 o | dataset | number of nodeg number of edges
r={-e Z_; Tany e (10) CoR 5K ~ TTAK
= CoMMG ~ 52K ~ 354K
Thus, we have AP ~ 315K ~ 1,834K
— 2 - 1 T =
[F=7lz = [[(1-¢) Z m “uq - ug €2
i=t+1 ! 4.1.2 Applications
n
< (1-29] Z ﬁ cug - ul o - 1€l As mentioned k_)efore, many applications can be built upon
i=t+1 CAi random walk with restart. In this paper, we test the follow-
_ 1-g i 1 an ing applications:
i=t+1 (1= cXi) e Center-piece subgraph discovery (CePs) [26]
which completes the proof of Lemma 4. e Content based image retrieval (CBIR) [14]
4 Experimental Results ° Cross—mpdal cgrrglation.discovery (CMCD), including
automatic captioning of images [22]
4.1 Experimental Setup e neighborhood formulation (NF) [25]
4.1.1 Datasets The typical datasets for these applications in the past
o ColR years are summarized in table(4.1.2)

This dataset contains 5,000 images. The images are cate- ) o )
gorized into 50 groups, such as beach, bird, mountain, jew- 1able 6. Summary of typical applications with
elry, sunset, etc. Each of the categories contains 100 isnage  different datasets

. : CBIR | CMCD | Ceps| NF
of essentially the same content, which serve as the ground
truth. This is a widely used dataset for image retrieval. Two ColR v v
kinds of low-level features are used, including color mo- CoMMG v
ment and pyramid wavelet texture feature. We use exactly AP v
the same method as in [14] to construct the weighted graph
matrix W, which contain$, 000 nodes ands 774K edges
e CoMMG 4.1.3 Parameter Setting

This dataset is used in [22], which contains around 7,000 The proposed methods are compared v@tirheFly Pre-
captioned images, each with about 4 captioned terms. ThereComputeandBIk. All these methods share 3 parametets:
are in total 160 terms for captioning. In our experiments, m and&;. we use the same parameters for CBIR as [14],
1,740 images are set aside for testing. The graph matrixthat isc = 0.95, m = 50 and¢; = 0. For the rest applica-
W is constructed exactly as in [22], which contalfids 200 tions, we use the same setting as [22] for simplicity, that is
nodes ands 354K edges. c=0.9,m =80 and¢; = 1078.



For B_LIN and NB_LIN, we take&, = 10~* to spar-
sify Qq, U, andV which further reduces storage cost. We
evaluate different choices for the remaining parametess. F
clarification, in the following experiments, BIN is further
referred as BLIN(k, ¢, Eig/Part), wherek is the number
of partition, ¢ is the target rank of the low-rank approxima-
tion, and “Eig/Part” denotes the specific method for doing
low-rank approximation — “Eig” for eigen-value decompo-
sition and “Part” for partition-based low-rank approxima-
tion. Similarly, NB_LIN is further referred as NB.IN(¢,
Eig/Part), andBlk is further referred aBIk(k).

For the datasets with groundtruth (ColR and CoMMG ),
we use the relative accuradiel Acu as the evaluation cri-
terion:

RelAcu = @

Acu (12)

where Acu and Acu are the accuracy values by the evalu-
ated method and biyreComputerespectively.
Another evaluation criterion iRelScore,

tSer

RelScore = ——,

tScr

wheretScr andtScr are the total relevance scores captured

by the evaluated method and ByeComputerespectively.

(13)

cost. Both BLIN and NB.LIN 1) achieve about one
order of magnitude speedup (compared whTheFly;

and 2) save one order of magnitude on pre-computational
and storage cost. For example,LBN(50, 300, Eig) pre-
serves 95%-+ accuracy for both initial retrieval and rel-
evance feedback, while it 1) achieves 32x speedup for
on-line response (0.09Sec/2.91Sec), compared ®ith
TheFly and 2)save 8x on storage (21M/180M) and 161x
on pre-computational cost (90Sec/14,500Sec), compared
with PreCompute NB_LIN(600,Eig) preserves 93%+ ac-
curacy for both initial retrieval and relevance feedback,
while it 1) achieves 97x speedup for on-line response
(0.03Sec/2.91Sec), compared wilimTheFly and 2)saves
10x on storage(17M/180M) and 48x on pre-computational
cost (303Sec/14,500Sec), compared wWitaCompute.

4.3 CoMMG Results

For this dataset, we only compare NBN with On-
TheFly and PreCompute The results are shown in fig-
ure (3). The x-axis of figure (3) is plotted in log-scale.
Again, NB_LIN lies in the upper-left zone in all the fig-
ures, which means that NBIN achieves a good bal-
ance between on-line quality and off-line processing cost.
For example, NBLIN(100, Eig) preserves 91.3% quality,

All the experiments are performed on the same machineyjje it 1) achieves 154x speedup for on-line response

with 3.2GHz CPU and 2GB memoty.
4.2 ColR Results

100 images are randomly selected from the original

dataset as the query images and the precision vs. scope i¢.4

(0.029/4.50Sec), compared wi@nTheFly 2) saves 868x
on storage (281/243,900M) and 479x on pre-computational
cost (46/21,951Sec), compared wiRreCompute

AP Results

reported. The user feedback process is simulated as fol-

lows. In each round of relevance feedback (RF), 5 images
that are most relevant to the query based on the current
It should be

retrieval result are fed back and examined.
pointed out that the initial retrieval result is equivaléot
that for neighborhood formulation (NFRel Acu is evalu-

ated on the first 20 retrieved images, that is, the precision

within the first 20 retrieved images. In figure (2), the result

are evaluated from three perspectives: accuracy vs. quer

time (QT), accuracy vs. pre-computational time (PT) and

Yy

This dataset is used to evaluate Ceps as in [28]IBis

used to generate 1000 candidates, which are further fed
to the original Ceps Algorithm [26] to generate the final
center-piece subgraphs. We fix the number of query nodes
to be3 and the size of the subgraph to 2@ RelScore is
measured by "Important Node Score” as in [26]. The result
is shown in figure (4).

Again, B_LIN lies in the upper-left zone in all the fig-

accuracy vs. pre-storage cost (PS). In the figure, the QT, PTUres, which means that BIN achieves a good balance

and PS costs are in log-scale. Note that pre-computationaPetween on-line quality and off-line processing cost. For

time and storage cost are the same for both initial retrieval €xample, BLIN(100, 4000, Part) preserves 98.9% qual-

and relevance feedback, therefore, we only report accuracyty, While it 1) achieves 27x speedup for on-line response

vs. pre-computational time and accuracy vs. pre-storage(9-45/258.2Sec), compared winTheFly 2) saves 2264x

cost for initial retrieval. on storage (269/609,020M) and 214x on pre-computational
It can be seen that in all the figures, LBN and  COSt(8.7/1875Hour), compared witheCompute

NB_LIN always lie in the upper-left zone, which indi-

cates that the proposed methods achieve a good balance 7y aiso perform experiment on BlockRank [18]. However, thsaiite

between on-line response quality and off-line processingis similar withOnTheFly Thus, we do not present it in this paper.




Relative Accuracy vs. Query Time
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Figure 2. Evaluation on ColR for CBIR
5 Related work in bipartite graphs [25], content-based image retrievd],[1

cross modal correlation discovery [22], the BANKS sys-

In this Section, we briefly review related work, which tem [2], ObjectRank [3], RalationalRank [10], and so on.

can be categorized into three groups: 1) random walk re-

lated methods; 2) graph partitioning methods and 3) the ~Graph partition and clustering. Several algorithms

methods for low-rank approximation. have been proposed for graph partition and clustering, e.g.
Random walk related methods. There are sev- METIS [19], spectral clustering [20], flow simulation [8],

eral methods similar to RWR, including electricity- co-clustering [6], and the betweenness based method [11].

based method [28], graph-based Semi-supervised learnlt should be pointed out that the proposed method is orthog-

ing [27] [7] and so on. Exact solution of these methods ©Na! to the partition method.

usually requires the inversion of a matrix which is often di-

agonal dominant and of big size. Other methods sharing this Low-rank approximation: One of the widely used
requirement include regularized regression, Gaussian protechniques is singular vector decomposition (SVD) [12],
cess regression [24], and so on. Existing fast solution for which is the base for a lot of powerful tools, such as la-
RWR include Hub-vector decomposition based [16]; block tent semantic index (LSI) [5], principle component anaysi
structure based [18] [25]; fingerprint based [9], and so on. (PCA) [17], and so on. For symmetric matrices, a comple-
Many applications take random walk and related methods asmentary technique is the eigen-value decomposition [12].
the building block, including PageRank [21], personalized More recently, CUR decomposition has been proposed for
PageRank [13], SimRank [15], neighborhood formulation sparse matrices [1].



6

Conclusions [8] G.Flake, S. Lawrence, and C. Giles. Efficient identification
of web communities. IIKDD, pages 150-160, 2000.

In this paper, we propose a fast solution for computing [9] D. Fogaras and B. Racz. Towards scaling fully personalized

the random walk with restart. The main contributions of the
paper are as follows:

e The design of BLIN and its derivative, NBLIN.

A

Sherman-Morrison Lemma [23]: if X! exists, then:

whereA = (87! — VX~1U)!

pagerank. IrProc. WAW pages 105-117, 2004.
[10] F. Geerts, H. Mannila, and E. Terzi. Relational link-based
ranking. InVLDB, pages 552-563, 2004.
[11] M. Girvan and M. E. J. Newman. Community structure is
social and biological networks.

These methods take advantages of the block-wise[12] G. Golub and C. LoarMatrix ComputationJohns Hopkins,

structure and linear correlations in the adjacency 1996.
matrix of real graphs, using the Sherman-Morrison [13] T. H. Haveliwala. Topic-sensitive pageranW/WW pages
Lemma. 517-526, 2002.

[14] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang. Manifold-
The proof of an error bound for NBIN. To our ranking based image retrieval. KCM Multimedia pages
knowledge, this is the first attempt to derive an error 9-16, 2004.
bound for fast random walk with restart. [15] G. Jeh and J. Widom. Simrank: A measure of structural-

context similarity. InKDD, pages 538-543, 2002.
Extensive experiments are performed on several real [16] G. Jeh and J. Widom. Scaling personalized web search. In
datasets, on typical applications. The results demon- WWW 2003.
strate that our proposed algorithm can nicely balance [17] 1. Jolliffe. Principal Component AnalysisSpringer, 2002.
the off-line processing cost and the on-line response [18] S- Kamvar, T. Haveliwala, C. Manning, and G. Golub. Ex-
quality. In most cases, our methods preserve 90%+ ploiting the block structure of the web for computing pager-

. . . . . ank. InStanford University Technical Repp#003.
232‘['Igrll(\j,vtlar:e?qrjg?ttli?nseavmgs on the pre-computation [19] G. Karypis and V. Kumar. Parallel multilevel k-way parti-

tioning for irregular graphsSIAM Review41(2):278-300,

1999.

Appendix [20] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. INIPS pages 849-856, 2001.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: Bringing order to the web. Technical
report, Stanford Digital Library Technologies Project, 1998.
Paper SIDL-WP-1999-0120 (version of 11/11/1999).

[22] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Au-
tomatic multimedia cross-modal correlation discovery. In
KDD, pages 653-658, 2004.

[23] W. Piegorsch and G. E. Casella. Inverting a sum of matrices.

(X -USV) ' =X+ X 'UAVX™!
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