
Assignment 5
For this assignment form groups of two. This assignment is worth 40 points.
Solutions must be submitted by 26.5.2024. Use the link on e-ucilnica to turn in
your work. The report must be in .pdf format. You should also submit source
code of your implementation and results in .txt format.

Continuous optimization of pymoo DF functions
The aim of this assignment is to find the best result for 14 optimization (min-
imization) functions that are available in pymoo.problems.dynamic.df named
from DF1 to DF14. The functions are meant for pareto optimization and the
functions change trough time. For all the functions we will set the time = 50,
so that the functions will remain static. Also since this is pareto optimization
each problem has 2 or 3 objective functions. To convert it to one value you
need to minimize the sum of all the objective functions for each of the
14 problems.

Instructions

To test the results use all 14 functions with 75 dimensions with bounds in
default ranges. Note that some functions use different bounds for the first
two dimensions. You can see the lower and upper bounds of each function in
variables xl and xu. Check appendix and supplementary code for example. Use
time = 50.

As a team you need to implement at two or more optimization programs.
One of the optimization programs must be local search (best descent local
search, tabu search, guided local search, variable neighborhood search, simu-
lated annealing, etc...) and the second one can be any optimization approach
of your choice (genetic algorithm, differential evolution, whale algorithm, ant
colony optimization, etc...). The second approach can also be local search.

You need to implement the approaches yourself and not use already build
optimizers in pymoo or other python modules. There is no time limit on how
long you can let the algorithms running.

Reporting

Write your results into the Google Spreadsheet available here. Each group is
encouraged to fill their results as soon as it has them available so that peers can
see what are currently the best obtained results. The groups should be written
in spreadsheet before 19.5.2024.

Write a report with your results and description of used approaches. Report
should include results for each tested method separately and a short description
of each method (1-2 pages for each method). Submit your code and report on
e-ucilnica.

You should also submit coordinates of the found minimums for each method
in a .txt file. The file should contain 14 lines, each line representing its own
function. The values of coordinates should be separated by tabulator. See
example on e-ucilnica.

1

https://docs.google.com/spreadsheets/d/1pfXTO1WDzaqoE1zEVAa9-FWZaXjxwIQ7KhNCU09iJKo/edit?usp=sharing


Grading

Final grade will be based on quality of results, quality of report, oral presenta-
tion, number of methods tested and code quality.

2



Appendix
Python example

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 import pymoo.problems.dynamic.df as dfs
5

6 n = 75
7 time = 50
8 problems = [dfs.DF1(time = time , n_var = n),
9 dfs.DF2(time = time , n_var = n),

10 dfs.DF3(time = time , n_var = n),
11 dfs.DF4(time = time , n_var = n),
12 dfs.DF5(time = time , n_var = n),
13 dfs.DF6(time = time , n_var = n),
14 dfs.DF7(time = time , n_var = n),
15 dfs.DF8(time = time , n_var = n),
16 dfs.DF9(time = time , n_var = n),
17 dfs.DF10(time = time , n_var = n),
18 dfs.DF11(time = time , n_var = n),
19 dfs.DF12(time = time , n_var = n),
20 dfs.DF13(time = time , n_var = n),
21 dfs.DF14(time = time , n_var = n)]
22

23 # Choose a sample test point (Note that this point is
outside of bounds for some functions !)

24 test_point = np.array ([0.5] * n)
25 for p in problems:
26 print(p.name)
27 print("Bounds␣from␣", p.xl, "␣to␣", p.xu, ".")
28 print(p.evaluate(test_point))
29 print(sum(p.evaluate(test_point)))
30

31 # Visualization
-----------------------------------------------------

32 # Calculates a 2d slice of a n- dimensional space
33 def sum_of_paretno_functions(DF , x):
34 if len(DF.xl) == 2:
35 return [sum(z) for z in DF.evaluate(np.array(x

))]
36 else:
37 xm = list((DF.xl+DF.xu)/2)
38 x = [[a,b, *xm[2:]] for a, b in x]
39 return [sum(z) for z in DF.evaluate(np.array(x

))]
40

41 #Plots a 2d graph of a function (slice)

3



42 def plot_function(DF):
43 d = 400
44 x = np.linspace(DF.xl[0], DF.xu[0], d)
45 y = np.linspace(DF.xl[1], DF.xu[1], d)
46 X, Y = np.meshgrid(x, y)
47 points = [[x, y] for x, y in zip(X.flatten (), Y.

flatten ())]
48 Z = sum_of_paretno_functions(DF, points)
49 Z = np.array(Z).reshape ((d,d))
50 print(Z)
51

52 # Plotting the functions
53 fig , axs = plt.subplots(1, 1, figsize =(15, 15))
54 axs.contourf(X, Y, Z, levels =50, cmap='viridis ')
55 axs.set_title(DF.name)
56 axs.set_xlabel('x')
57 axs.set_ylabel('y')
58 plt.show()
59

60 for p in problems:
61 plot_function(p)

4


